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CHAPTER 1

INTRODUCTION.

OBJECTIVES.

Domain-Specific Software Architecture for Intelligent Control.

The overall objective was that of defining and developing software

architectures for specific application to a class of dynamic system control

problems which are called, variously, "Intelligent ''[1] [a], ,,Expert,J3],

"Declarative ''[4], "Knowledge-based ''[5], and/or "Fuzzy ''[6]. Development

was for the purpose of exposing the issues key to verification and

validation of the resulting architectures and was carried only to the point

of demonstration. A necessary part of that definition was the setting down

of as strong a theoretical base as possible, in the usual control-theoretic

and computer science senses. The research was multi-disciplinary, in that

it enfolded control, artificial intelligence, and software engineering

disciplines.

The overall objective was to approach the creation of software

architectures in a balanced way, giving just as much attention to the

software engineering issues as to the abstract theoretical control issues.

Moreover, the control issues were to be approached in a way which blends

computer science, decision science, and stochastic control. In particular,

the issue of controlling systems whose performance is modeled semi-

qualitatively was approached by expressing and exploiting dualities which

exist between stochastic control and expert systems theories. The overall

objective was addressed through several sub-objectives. These were

naturally divided between decision/control and software engineering.

The specific domain which was chosen for application and

demonstration was that of Aircraft Flight Control. The approach was that

of symbolic interpretation and management of flight operational modes, to

satisfy operational clearances. This was done by implementing expert,

rule-based interpretation and meta-control of the aircraft automatic flight

control system, AFCS. Rules of flight were taken from those published by
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American Airlines for the Boeing-737 aircraft.

Qualitative Decision/Control Inference Under Uncertainty.

The Intelligent Control problem is to control dynamic systems which

are modeled in two different ways. These systems possess the usual
numerical state-variable model (linear or non-linear), defined on a direct-

product space of numerical (measurable or observable) variables. However,

at the highest level of modeling abstraction, the systems are described by
performance measures, such as operating modes, which may be partitions

of the numerical state space. Moreover, these measures are not unique, in

that they possess uncertainty as to the partition boundaries. As subsets of

a direct-product space, the performance measures overlap. This leads to

describing qualitative dynamic system performance measures by

conditional probabilities, p(performance event I num. var.), or fuzzy

membership functions. The control paradigm is to process numerical

sensor measurements to first infer the system's qualitative performance and

then control it, much as a human would do.

System performance decision is embedded in Intelligent Control,

either implicitly or explicitly. If a human operator is present, explicit

decision is useful for explanation of controller actions. In any event,

implicit decision is present, as may be seen from Kosko's formulation of

Fuzzy Control [7]. This implicit decision, as an element of control, may be

thought of as conjunctive, in the Decision Sciences [8] sense. As such, it is

not hard decision, but soft, carrying with it a measure of its correctness.

Thus, Intelligent Control may be said to be (Soft) Decision-Directed

Control [9]. Moreover, a particular Fuzzy implementation (one of Kosko's [7]

several) was shown to be dual with decision-directed conditional-mean

(Bayesian) estimation and control.

This objective was to model and implement Intelligent Control for

Dynamic Systems in such a way as to recognize and exploit dualities

existing between Stochastic Decision/Estimation/Control, Fuzzy Control,

Decision Sciences, and Expert Systems.
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SIGNIFICANCE.

The significance of the research lay in two areas. The first was in the

creation of theoretical architectures and algorithms for Intelligent Control.

The second was in the implementation issues which were solved in order to

make the architectures and algorithms workable and acceptable in

practice.

Intelligent Control holds promise of providing a new class of control

techniques applicable to systems of higher orders of complexity than is at

present practical. One significance of the research was to make this

extension in ways that are recognizable abstractions, or duals, of well

understood methods of stochastic decision, estimation, and control. Such

abstractions suggest ways to characterize and compare performance and to

validate Intelligent Control algorithms, something that has been heretofore

absent. This leads to contributions in a well-founded supporting theory for

Intelligent Control, which has been slow in appearing.

RELATION TO PRESENT STATE-OF-KNOWLEDGE.

The present state of knowledge of Intelligent Control is a result of

many individual efforts dating back to roughly 1985. In that year, there was

formed an IEEE Committee on Intelligent Control. Since then, annual

symposia have been held, with published proceedings (cf.:). Previous work

has been principally driven by computer science (software) issues [1°], such

as Knowledge Representation [11], and by the long history of work in Fuzzy

Logic [12]. Lately, however, there has appeared work on the fundamental

mathematical modeling of Intelligent Control systems. The works of

Kohn [4] and Nerode [13] are representative. This latter work attempts to set

down a well-founded and complete supporting theory for symbolic control,

based on modern algebra and autonoma theory. In its present state of

development, the theory is deeply algebraic and topological, combining

concepts from group theory with the more geometric concepts of state-

space control theory.

The Kohn-Nerode work has already spawned a top-level architecture

for an Intelligent Controller, within which they are working to complete
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their theory. Our architecture, at the first two levels of explication, is

compatible with theirs. (Our architecture will be shown in the following

section.) Our approach, however, was not based on a formal logical

(algebraic) model, but on a more geometric (and visualizable) object-

oriented [14] model, which uses Frames Ill] for knowledge structuring and

modified-Bayes (Fuzzy-like) knowledge representation and inference

implementation. That is, knowledge of the higher level qualitative

performance abstractions is contained in functions, like fuzzy Membership

Functions, or Bayes a posteriori conditional probability functions.

Inference processing combines fuzzy (as in Kosko's Fuzzy Associative

Memories[7]), crisp-rule-based, and procedural processing, as appropriate

to the level of inference. Note, however, that our fuzzy inference is

computed using stochastic control dualities. That is, classical logical set

combining (soft "and/or") is used, rather than the newer fuzzy operations

(hard conjunction/disjunction) [15].

The research reported here complements other ongoing work to

complete a topological foundation for Intelligent Control, by dealing

specifically with knowledge representation and inference implementation

issues, and by developing dualities with stochastic

decision/estimation/control.

A SYNOPSIS OF THE RESEARCH.

The present work has been funded for six years from a variety of

sources. Early funding was from E-Systems of Dallas, TX., matched by

funding from a NASA Center for Space Power, established at Texas A&M

University. Recent support was from NASA Headquarters and NASA

Langley Research Center, under grants, NGT-50401 and NAGl-1066.

These grants expired in 1992 and 1994, respectively. This report compiles

a collection of conference papers written under those grants.

The work reported here has focused on the specific application of

managing the flight of a transport-class jet aircraft. However, the

architectures and algorithms developed have been generic to dynamic

systems. (Indeed, previous work focused on symbolic interpretation of
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radio signals and intelligent control of an AC power distribution system.)

This is because the symbolic processing draws from data-bases (libraries)

which can be loaded with knowledge specific to a particular application.

This follows the new thinking in Expert Systems which favors model-based

reasoning in specific, knowledge-rich problem domains [16], as opposed to

knowledge-poor, general problem solvers [17]. Thus, progress has been

made in the general area of Intelligent Control of dynamic systems, even

though a specific aircraft control application has been the recent focus of

the work. What is being said here is that the technology is transferable.

And, the implemented software is being done in such a way that it is

reusable.

At the present point in time (December, 1992), an architecture has

been formulated, as in Figure-I, below, which is shown in Data-flow

(Block Diagram) form.
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Figure 1. Top-level Data-flow Diagram.

This top-level architecture shows three major elements, being a symbolic

interpreter for operating mode, a meta-controller, and a graphical user

interface (GUI). The interpreter is a soft-decision element, dealing with a
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pre-defined, hierarchical set of system operating modes and conditions[5].

It employs modified-Bayes decision, using pre-defined conditional

probability functions (fuzzy membership functions), and an abductive

scheme for computing decision confidence [18] and for testing for

conflicting evidence. The Meta-Controller employs a combination of

fuzzy-, crisp-, and procedural processing to formulate inputs to the

standard automatic flight control system, in response to input directions in

English language, using stored procedural rules. For the fuzzy (abductive

Bayes) processing, the Interpreter computes the necessary decision

elements and passes them to the Controller. The GUI provides necessary

input/output to the symbolic processors and to the simulation of the

dynamic system (aircraft).
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Figure 2. Symbolic Processor.
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Figure-2 shows a second-level view of the architecture, sans GUI. Of

the modules shown in the figure, only three are currently under

development. These are the Blackboard [19], the Abductive Inference

Engine (Interpreter), and the Fuzzy + Inference Engine (Meta-controller).

The Blackboard is used principally to limit the ripple effect on other

modules of modifications to any single module. It is essentially an internal

data controller. A classical Blackboard approach would internalize the

Interpreter and Meta-Controller. We have removed them from the

Blackboard, proper, as a matter of emphasis, and to facilitate development.

But, note that our total architecture is similar to the Blackboard-based

controller of Skillman, Kohn, et. al. [2°]

WORK IN PROGRESS ELSEWHERE.

There is significant work being performed elsewhere, as indicated by

the annual Proceedings of the IEEE International Symposium on Intelligent

Control. That work is too voluminous to recount here. Also, we have

referenced other work in the previous section entitled, RELATION TO

PRESENT STATE OF KNOWLEDGE. In addition, there is work on

Intelligent Control being presently performed under the DARPA Domain-

Specific Software Architectures Initiative, as recently reported in the

Proceedings of the 1992 IEEE Symposium on Computer-Aided Control

System Design. Reported work by Hayes-Roth, et. al. [21] also uses the

concept of meta-controller, as we do. More work by Platek and Nerode on

Hybrid Control was verbally reported [22], though not documented, as was

the work by Kohn and Nerode [13].

Curiously, not a significant percentage of the ongoing work has been

published in technical journals. This may reflect the fact that there seems

to be no single journal which is well suited to Intelligent Control.

Publications are scattered through a variety of journals.
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CHAPTER 2

KNOWLEDGE-BASED CONTROL.
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"If we could first know where we are,
and whither we are tending, we could

better judge what to do, and how to do it."

- A. Lincoln; June 16, 1858.

"The heart of the prudent getteth knowledge;

and the ear of the wise seeketh knowledge."
[Proverbs 18:15].

- King Solomon; circa 1,000 B.C..
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INFERENCE AND CONTROL.

INFERENCE EMBEDDED IN CONTROL.

In 1858, Abraham Lincoln pretty well made the case for Knowledge-

based Control with his statement about knowing first and doing second.

Down through the centuries, it has been appreciated that knowledge is the

precursor to prudent action. So it is, with the emerging area which is the

subject of the present paper.

Knowledge-based Control, also known as Intelligent Control, comes

from the Systems and Control discipline, as a branch which is traceable

back to a seminal paper by K.S. Fu [1]. Twenty years ago, he recognized

that automatic control should benefit from developments in Artificial

Intelligence (AI), if not vice versa. That these benefits have been so long

in coming, is a comment upon the difficulties inherent in AI development

and in transfer between two very different technologies. It is one purpose

of the present paper to point out dualities between AI and Control which

make the transfer easier.

Since the 1950's, it has been recognized that inference is an

embedded element of modern control. Bellman's [2] development of

dynamic programming employed explicit inference, in the form of

decision, as an integral step of control. Kalman's [31 famous contribution

also showed inference, specifically prediction, to be inherent in (state)

control. Both examples of inference embedded in control illustrate what is

formally codified in the now famous Separation Theorem [4] of stochastic

control. The theorem states that, under fairly general conditions, a

reasonable closed-loop control system may be formally partitioned into

three parts; comprising the system (plant) under control, an inferential

estimator, and a memoryless controller.

The difference between traditional Modern Control and Knowledge-

based Control is that the embedded inference and memoryless control

algorithms now contain qualitative, as well as numerical, processing

elements. That is, the inferences and resulting controls are focused on
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qualitative performance measures, as well as numerical. As a dual to the

usual required state-space modeling of the plant, now there is the required

modeling of qualitative states.

THE PARADIGM.

The general pattern in knowledge-based control of a dynamic system

is as follows: First, the usual numerical state-variable modeling of the

plant takes place, with a preference given to states which are available as

sensor readings, or are, at least, easily derivable (observable) therefrom.

Next, a state-space is constructed, which is the Cartesian product of the

states. (Actually, it is a direct-product space, since the door is left open to

measurable states which are inherently qualitative, and not numerical.)

Then, and most importantly, qualitative states are defined as partitions of

the space. These qualitative states are most generally "operating modes,"

as defined by a human operator. Such modes are not directly measurable,

but are observed by (human) inference processing of the available sensor

measurements. Control is then exerted to maintain or modify these

inferred states (modes).

As an example, consider the management of the flight of a transport-

type aircraft. By management is meant an automation of the control

activities traditionally performed by the pilot and/or flight engineer. It is

assumed that the usual numerical automatic flight control system (AFCS)

is present. Thus, the pilot concerns himself with evaluation of flight

performance and formulation of inputs to the autopilot, to accomplish the

goals of the flight.

The usual sensor readings are assumed to be available, as in Figure-I,

below. Based on these available readings, and others derivable from them,

qualitative operating modes are defined, as in Figure-2. Given the sensor

readings and the defined qualitative modes, mode is inferred and control

exerted, based on knowledge of the aircraft and of the rules of flight.

The list of operating modes is assumed finite, with mode_unknown

covering the rest of the possibilities. Thus, the required inference is deci-
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Figure 2. Flight Operations List.

sion, rather than estimation. That is, given the sensor measurements, it is

to be decided into which partition of the direct-product space the observed

"point" fits. Given that decision, an input to the AFCS is then formulated,

based on known goals and characteristics of the aircraft.

ANTECEDENTS.

Although the above paradigm sounds simple (and it is accomplished

routinely by human pilots) the automation thereof is not trivial for several

reasons. First, in the definition of operating modes, the partitioning of the

state space, is not clean. That is, the operating modes are not unique, in

terms of the sensor measurements. Second, the decision inference method
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is not obvious. This is because reasonable limiting of the number of

operating modes may cause some sensor data to apparently contradict a

mode that is "essentially true". The decision method must accomodate

these anomalies. Finally, the method for synthesizing qualitative

commands, accompanied by numerical prescriptions, based on qualitative

performance interpretations, is also not obvious. Thus, is examined the

information and control discipline, as well as the artificial intelligence

discipline to determine what prior results might apply to the present

problem.

DISCRETE-EVENT DYNAMIC SYSTEMS.

A particular branch of control theory which has been active for

twenty years or more is that of discrete-event dynamic systems (DEDS).

This discipline has attempted to create, for dynamic systems exhibiting a

finite (or at least countable) number of states, a theoretical basis parallel

to that existing for continuous-state dynamic systems. Upon these discrete

state spaces, "events" are defined as the causes of the abrupt transitions of

the state-vector between its discrete values. A recent paper by Ramage

and Wonham [5] provides a clear summary of the application and methods

of DEDS. Effort has focused on admissable event trajectories through the

state space (sequences of events). In the inference context, effort is to

determine if, given a certain sequence property, an observed sequence

exhibits that property. In the control context, a trajectory is controlled to

have the desired property. Methods of analysis have been logical, if time is

not a consideration, or timed. Among the timed approaches are non-

stochastic (Petri nets) or stochastic (Markov processes). Generally, the

analytical approaches have been arithmetic. That is, they have not been

geometric.

In the paradigm previously described (aircraft example), a finite set

of events is defined on a continuous state-space. In the decision context,

the events are not the causes of transitions from one region of the space to

another, but are the partitions of the space, itself. Interest, here, is not in a

sequence of operational modes, but in identifying the individual modes. In
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the control context, interest is not in some average control of a sequence of

modes, but in just moving very deterministically to a succeeding mode.

Finally, modeling and processing methods are desired, which give

maximum insight (visibility) into the nature of the problem, itself. Thus,

the search through antecedents is continued.

EXPERT SYSTEMS: FIRST GENERATION.

Next is that branch of AI, known as Expert Systems. Therein are

programs particularly constructed to perform qualitative inference. It is

natural to inquire whether such software might be naturally employed to

perform the embedded inference required in Knowledge-based Control.

The success of early Expert System work devolved from the

development of the "General Problem Solver (GPS)" by Newall and

Simon [6], in the 1960's, which provided the foundation for much of the

subsequent development in Expert Systems. According to Giarratano and

Riley [7], GPS produced the now commonly accepted architecture for an

expert system, comprising i)-long-term memory (rules), ii)-short-term

memory (working memory), and iii)-cognitive processor (inference

engine). GPS was founded upon the assumption that much machine

reasoning could be done, based on IF-THEN types of rules. This

assumption was shown by subsequent events to be true.

Winston [8] related that GPS focused on a state description of the

problem to be solved. In particular, it was goal driven, to move the current

state of the problem to some goal state. A distance measure was employed

upon current and goal states to measure progress toward a solution. This

procedure is dual, of course, to feedback control theory, wherein an error

between input and output drives the system. Since the state of theGPS

problem was not numerical, the problem control was by search through a

tree, to move current state to goal state. In modern expert system parlance,

this was forward-chaining, depth-first search.

The original Newell and Simon approach dominated expert system

work for twenty or more years. And, this approach was marked by a
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preference for algebraic, logical processing over what might be termed the

geometric approach, the latter based on appreciation of natural
organizations of knowledge-rich domain-specific problems. Thus, expert

systems tools and shells were created, to which the knowledge

representation and inference procedures for diverse domain-specific

problems must needs be conformed. This paradigm came to be known as
the "First Generation" of expert systems. It reached a limit to growth, a

barrier characterized by brittleness, the inability to respond to increasing

problem sophistication with a complementary sophistication of inference.

Thus, the characterization by Giarratano and Riley [7] as "the eternal

beginner."

THE DECISION SCIENCES.

There is another discipline, known as Decision Science (DS),

interested in problems very similar to that of Intelligent Control. It owes

its existance to ancestors in industrial engineering, operations research,

econometrics, cybernetics, etc. A close examination of the contributions

of Expert Systems to problems of interest in the Decision Sciences

community has been made by Sutherland [9]. Because Sutherland's

formulation of the decision problem is so congruent to the problem of

knowledge-based control, his precepts are briefly reviewed here.

Sutherland first defined the decision problem as being conjunctive.

That is, it had two sequential parts, being, first, the recognition of an event

(e), and, second, the formulation of a response (r). Both event and response

are characterizable in terms of an abstract state. Moreover, for an action-

oriented problem class, there existed a function (i.e., a mapping), f : (e,r),

relating response to recognized event. He identified sixteen possible cases,

being all (e,r) combinations resulting from four degrees of uncertainty in

either event or response. The four degrees of uncertainty (from the

stochastic control viewpoint, not Sutherland's) ranged from both event and

response being purely deterministic to bothwholly stochastic.

Sutherland showed that Decision Science and Computer Science (AI)

had not (circa 1985) been working on the same problems. Specifically, AI
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had been focused on either event-recognition or response-formulation,

while DS has focused on the conjunction of the two. His bottom-line

assessment was that (first-generation) expert systems had not evolved to

the point of being able to handle problems which are characterized by a

large measure of uncertainty in the data. His reasoning was that the purely

logical (arithmetic) algorithms of the first-generation inference engines

would have to yield to facilities capable of dealing mathematically with

"graded qualitative valuations." He prophesied that AI would have to

embrace certain elements of "fuzzy technology."

FUZZY METHODS.

Fuzzy Set Theory was created by Zadeh [10] twenty-five years ago.

Within five years, its use in decision theory was being examined [11].

Within nine years, its use in control was being promoted [12]. Later (after

1986), it was implemented in practical control systems [13].

Fuzzy Set Theory is a dual of Bayesian Conditional Probability

Theory, in the sense that events may be modeled by set functions whose

range is the positive reals. Moreover, these functions may be manipulated

to create similar positive real functions defined on subsets of the original

domain. Therefore, in both cases, the set functions may be used to

calculate the solutions of decision problems.

As a case upon which to focus, consider the airplane example. There

the real-number domain might be the sensor reading, "Indicated Air

Speed," IAS. On this set of positive numbers are defined two events, being

"Takeoff" and "Landing." Now, the decision problem is to take an airspeed

reading andto make the (hard) decision on whether the aircraft is taking

off or landing.

In the Fuzzy context, a priori knowledge about the aircraft is used to

create two functions. One is representative of certainty about what

airspeeds should be observable during takeoff. The other models landing.

These functions are called "Membership Functions," according to the idea

that the observed airspeed has membership in the subsets supporting the
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two disparate event definitions. These two functions are unimodal (by
design) and are arbitrarily scaled to have unity maximum value. The

decision is obtained by choosing the event whose membership function is

greatest at the value of the sensed airspeed. See Figure-3, below, for an
illustration.

1xl 0-2 -

Fuzzy
Membershil_ -

Function
for Landing

0_

l,_gplo_lk__m.gro

_p. lu_ww.

Landln Take-
Off

I I I I
90 120 180 250

AirSpeed, Knots (IAS)

Figure 3. Membership Functions for Takeoff/Landing.

In the Bayesian context, the functions formed are so-called "a priori

conditional probability density functions." They are formed in exactly the

same manner and have the same shape, as for the fuzzy membership

functions. However, they are not arbitrarily scaled, but have unit area. The

reason for the unit area requirement is that, to obtain functions for other

events defined on the domain, the combining algorithms do not admit

arbitrarily scaled functions. The same decision rule is employed, which is

called "Maximum-Likelihood Decision Rule."

NOTE: (This note was not in the original paper.) - In a later paper,

reproduced below as Chapter-3; Soft Fuzzy Control, The scaling issue is

completely dealt with. There, it is shown under what conditions the

Membership Functions are scaled to unity maximum value or to unity area.
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Now, it is seen that it doesn't matter what the functions are called, so

long as the same decision rule is used. Scaling, however, does matter. It

can be seen from Figure-3 that while the Bayes decision threshold is 175

knots, the Fuzzy decision threshold is 180. Thus, there is a relative

decision bias of 5 knots between the two. For an indicated air speed of 177

knots, the two methods yield different decisions. Figure-3 plots the

membership functions with the required Bayes scaling.

Fuzzy Control [14] is decison-directed [15] control. By that is meant

that controls implemented from a fuzzy theory basis result as the

conjunctive solution of two decision problems. First, based on measured

sensor data, it is decided what event has taken place. Second, given that

event, it is decided what control to exert.

Fuzzy Control requires two sets of membership functions. The first

relates sensor data to event. The second relates event to control action. A

joint, two-dimensional membership function may then be synthesized,

relating measured sensor data directly to control. The result is then a

"fuzzy set of control" [14], which must be "defuzzified", in order to obtain a

unique control effort.

In manipulating the various fuzzy membership functions, there are

two different sets of combining algorithms which may be used. The first,

and currently most popular, employs the "conjunction" and "disjunction",

characterized by taking pointwise minima and maxima, respectively, of

two membership functions. These are described as the "hard logical AND"

and "hard logical OR", respectively. The other set is just the usual "soft"

logical connectives [11]. It is worthwhile to note that if the soft

connectives are used with unit area membership functions, there results

just the usual Bayes conditional probability density functions for subsets

of the domain set. Subset membership functions derived using the two

differing sets of connectives may or may not have the same shape (ignoring

scaling).

It is concluded that the general ideas of fuzzy control may be applied

to the present problem, even though specific implementations may use the
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standard (soft) Bayes manipulations. What is important is that there exists

support for qualitative inference and control which is essentially

geometric, rather than algebraic. If, now, expert systems may admit these

geometric approaches to modeling, qualitative inference, and control, a

solution to knowledge-based control will be synthesizable therefrom.

EXPERT SYSTEMS: SECOND GENERATION.

The first generation of expert systems was characterized by logic-

based implementations. A high-level computer language (PROLOG) was

even developed to support such implementations. However, use of that

language required that the problem be formulated in the first-order

predicate calculus. Thus, the design of expert systems was driven by the

programming necessary to embody the paradigm descended from the

pioneering efforts of Newell and Simon [6]. The problem definition had

necessarily to be shaped into the form required by existing expert system

tools. Thus, was born a need for Knowledge Engineers, whose task it was

to translate the natural problem requirements into forms suitable to

programming with the extant tools. Expert system development became

characterized by programmers learning enough about the problem domain

to develop efficient expert systems.

With the advent of the second generation, the so-called domain

experts (engineers, in the present context), become the expert system

developers, with programming methodology no longer dominating the

effort. This is because of a shift in focus on the task of translating problem

requirements into programmable form. The formulation is done at a much

higher level than previously. Whereas, the problem was abstracted at the

programming level, now the problem is abstracted at a level dealing with a

generic combination of problem, knowledge representation, and inference

strategy [16]. Now, domain experts (in the information and control

sciences) may learn enough about symbolic computing to specify the

inference engine and knowledge representation down to the (object-

oriented) programming level.
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Bylander and Chandrasekaran [16] draw attention to the fact that

knowledge representation, if unconstrained by a priori programming

requirements, is strongly influenced by the combination of problem nature

and inference strategy. Thus, there is a knowledge representation which is

natural to that combination. "Natural knowledge representation" is

referred to in [16] as the "interaction problem." There, Minsky[ 17] is cited

as having proposed frames as a knowledge representation suitable to the

interaction problem. They [16] note that the emphasis in frame

representations is on describing the conceptual structure of the domain.

It is intuitive to an engineer in the information and control sciences

to characterize a problem by its functional flow. That is, the information

processing functions being performed are specifically isolated and defined,

from the overall problem. Then, the flow of data through these functions is

diagrammed, according to the (problem-based) natural sequence of

operations. Then, the functionality implied by the diagram is mapped

(sometimes directly) into hardware and/or software. In computer science,

this is called the "data-flow ''[18] architecture. As an example, the top-level

data-flow diagram for the knowledge-based aircraft management problem

is as shown below in Figure-4.

The natural abstraction of the knowledge-based control problem

requires the isolation and definition of the functions (or tasks) to be

performed by the inference engines. Note that a complete knowledge

representation is not obtained without consideration of the inference

process.

It has been noted that knowledge-based control is decision-based,

requiring a formal dealing with uncertainty. What is needed is definition

of a set of inference functions, suitably generic to cover the domain of

dynamic systems. Such a set of useful functions has been the subject of

much work by Chandrasekaran [19] and his associates [16] [20] during the

last several years. The refinement of the generic function approach shall

well serve the present purposes.
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Figure 4. Top-level Data-flow Diagram.

A SPECIFIC APPROACH.

MODEL-BASED KNOWLEDGE REPRESENTATION.

Traditional first-generation expert systems typically consisted of a

knowledge base and an inference engine, separately. Two standard

approaches to knowledge representation were Production Rules and

Frames [21]. Such representations must, in general, provide both syntax and

semantics, defining symbols to be used and specifying how meaning is to

be attached to the arrangement of symbols [8]. Sucha representation may

be described as a semantic net, comprised of nodes and links. The nodes

are data objects and the links are relations, following the nomenclature

common to object-oriented modeling and programming [22].

What may be generally viewed as a semantic net may, in the dynamic

system domain, better be viewed as a hierarchical inference tree. Therein

is defined a hierarchical set of decision hypotheses, with the most general
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at the top. The most general hypotheses are the most generally defined

operating modes. These are defined in terms of linguistic variables. The
least general, at the bottom of the tree, are the sensor numerical data

corresponding to the linguistic operating modes.

The decision inference is inductive, proceeding up the tree. Control
inference is deductive, proceeding down the tree. For a strictly rule-based
implementation, these two would correspond to forward-chaining and

backward-chaining, respectively.

An instance of such an inference tree, for aircraft, is set forth as

Figure-5, below.

I MISSION OPS FRAME (HYPOTHESES)MODEI STATOSI OONTROLI MANURERFONSTRA,NT

I FUGHT_OPS FRAME (HYPOTHESES) I

T
I FLIGHT DYNAMICS FRAME (HYPOTHESES) I

1
I AIRCRAFT STATE FRAME (HYPOTHESES) I

1
I .UMER,¢A_YPROCESSEDOA_AFRAME I

T
l RAW_LI_H_DATAFRAME J
l_procldolojep.plc

Figure 5. Inference-Task, Data Representation.

The figure shows four levels of hypotheses. These are compound

hypotheses, made up of more elementary hypotheses, having names like

"MODE," "STATUS," "CONTROL," "MANUEVER," and

"CONSTRAINTS." The highest level concerns the mission of the dynamic

system. The next level concerns its operation as a system. Then is a level

concerning its dynamics. The next concerns its individual qualitative

states. Then is a level of description (which is not a decision hypothesis),
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being its numerical states, not raw, but after numerical processing. Finally,

is the level of raw numerical sensor (and other non-hypothetical) data.

Viewing compound hypotheses as sets, as in decision science, each

level of description has the appearance of a direct-product space of

linguistic variables. As an analyst thinks of a vector space for numerical

variables, a programmer may then think of a data frame for linguistic

variables.

Another refinement is added, which further justifies the frames

choice. And, that is that each frame (-level) is treated as an object in an

object oriented programming environment. Then, procedures (methods) are

attached to each slot in each frame, implementing the inference (decision)

process from level to level. The inheritance mechanism may be used to

advantage, here, to produce efficient, readable code.

For this knowledge representation, a complementary inference

procedure is now specified.

ABDUCTIVE INFERENCE.

In fuzzy inference, (Bayes) Maximum Likelihood decision is used.

This algorithm computes the (soft) product of the various membership

functions. The algorithm works properly, provided there is no conflicting

evidence present. However, suppose that some part of the dynamic system

or operating procedure fails, not badly enough to throw the system into

some other mode, but badly enough to yield data in conflict with the actual

operating mode.

For example, consider an aircraft on final approach to landing, which

is processing sensor measurements of indicated air speed (IAS), altitude

(ALT), rate of climb (ROC), flight path angle (FPA), engine power (EPR),

FLAPS, and GEAR, in order to make the interpreted decision

"MODE_FLT_OPS = APPR_FNL". The variable, GEAR, will enter the

computation as P(GEARILAND ) = 0, where P(*I*) denotes membership

function. Thus, the entire ML-product will be reduced to zero, and the

computation will fail to yield a decision. Now, it is clear that the airplane
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is still on final approach, but the gear just hasn't come down (for whatever

reason). What is needed is a decision computation which will still yield

"MODE_FLT_OPS = APPR_FNL," but will also yield

"STATUS FLT OPS--ALARM GEAR."

This example shows that rudimentary (Bayes or Fuzzy) decision

won't suffice. What is needed is a modified decision rule, such that the

fuzzy foundation is retained, but conflicting evidence is accomodated. A

decision framework which admits this modification is that of Abductive

Inference, as formulated in the Chandrasekaran group and clearly reported

by Punch [2°] et. al. Figure-6 shows a functional flow diagram for

Abductive Inference.
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J Generator Assembler
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:_ Quality
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Figure 6. Abductive Inference Functional Diagram.

J Decision
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The first functional element is an Elementary Hypothesis Generator.

This produces a list, with each elementary hypothesis tagged with its

corresponding plausibility. The plausibility is a numerical measure of the

likelihood of the elementary hypothesis. It may also be called a Confidence

Factor. For the airplane, an elementary hypothesis is {LANDJIAS}. A

plausible hypothesis is then one whose numerical plausibility value

exceeds some predefined threshold.

The next functional element in abductive (decision) inference is a

Compound Hypothesis Assembler. Its task is to assemble, from the
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elementary hypotheses, the most plausible compound hypothesis. This is

also what Bayes-ML does. However, the Abductive Assembler does this in

a constrained way. It satisfies internal requirements of 1). Consistency,

2). Completeness, and 3). Plausibility.

The consistency requirement is that the elementary hypotheses must

be compatible with each other. That is, that, pairwise, they are not

mutually exclusive. The completeness, or coverage, requirement is that the

compound hypothesis contain all the plausible elementary hypotheses. This

definition of covers is compatible with the set theoretic definition,

considering the compound hypothesis as a direct-product. This means that

no plausible elementary hypothesis may be ignored. The last requirement,

on plausibility, is to select the compound hypothesis which has the highest

plausibility score. If a plausibility threshold is used to remove implausible

elementary hypotheses from the computation, then the Bayes-ML

algorithm can be used.

The key to designing the Abductive Inference Engine lies with its

internal control. Punch [2°] et.al, showed a tree-like goal structure (their

Fig.-5) which formed the basis for internal control of the inference engine.

Their control was dubbed "Selector-Sponsor," in which a Selector would

select from among various Sponsors, each one of which sponsored a

particular method, or task. That is, the Selector was a global controller,

choosing from among the various subtasks for Abductive Inference. The

Sponsor then evaluated its method's appropriateness to be the next task.

The control strategy for the dynamic systems problem is

differentiated between the Interpretation task (inductive inference) and the

System Control task (deductive inference). The concept of a community of

distributed experts is employed, which is a parallel processing concept.

Interpretation starts at the bottom of the frame structure (See Fig.-5), with

the occurrence of new sensor measurements. Each measurement slot

contains its own expert. Each expert evaluates its owned membership

functions. Each expert then selects its plausible hypotheses. Each expert

then passes its data, as messages, to the higher levels of the framework,

according to rules. Every slot in the framework functions in this same way.
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Figure 7. Symbolic Processor.

Chandrasekaran's [19] list of generic functions is now augmented to

deal with temporal (dynamic) systems. System operational modes, if

ideally defined, are mutually exclusive and sequential. That is, they occur

naturally in sequence. Therefore, if the last mode is known, a priori

information is available about the present mode. Thus, is needed another

generic task, that of History Formatting and Processing. This is the dual of

exploiting correlation in stochastic decision/estimation (eg. Kalman

filtering).

From all of the above, results the second-level data-flow architecture

shown in Figure-7, above.
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CONCLUSION.

What has been related here, is that Knowledge-based Control (or

Management) of (complex) Dynamic Systems may be approached in a way
that is very natural to practitioners of the information and control sciences.

This approach is a synthesis of results evolving in several heretofore

separate disciplines. Modeling and processing methods are favored which
support visualization. Dualities are exploited, which exist between

Artificial Intelligence and Systems Theory (Communication, Control, and

Signal Processing). Based on research in progress, this approach appears to
the author to hold great practical promise in applications like aircraft
flight management.
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ABSTRACT.

This paper interprets fuzzy control in a Bayes context. Using two

different sets of logical connectives from the literature, there is shown a

clear duality between the fuzzy and Bayes versions of the same control

problem. The nature of this duality is explored. Its Bayes implications

serve to illuminate the geometrical nature of fuzzy control as opposed to

purely algebraic implementations. The results reconcile fuzzy and Bayes

viewpoints concerning control.
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INTRODUCTION.

For specific fuzzy control methods, this paper provides interpretation,

from the useful viewpoint of the Bayes decision, estimation, and control

discipline. The resulting interpretations, which are essentially geometric,

rest on similarities between fuzzy and Bayes approaches, rather than on

differences. This is a paper which is pragmatic in outlook, seeking

interpretations which are productive of design and implementation of

fuzzy control architectures. This paper seeks to apply that which is useful

from Bayes to that which is useful from fuzzy. As such, this paper is one of

reconciliation, rather than differentiation.

The paper first sets a context of Intelligent Control, which is the

application of Artificial Intelligence (AI) methods to symbolic control

based on knowledge. Within this context, Fuzzy Control may be viewed as

a particular and highly attractive implementation method. Then follows a

short review of Fuzzy Control. Next, the main results of the paper are

derived and explained, with a motivation to be clear and simple. The result

is a simple fuzzy control algorithm, written in Bayes notation. The

interpretation of the algorithm is clearly explained and derivational

restrictions stated. Because of the clear relation between the Bayes

derivation and the corresponding fuzzy implementation, the Bayes

algorithm is called a "dual" of the fuzzy algorithm.

INTELLIGENT (KNOWLEDGE-BASED) CONTROL.

Intelligent Control, also known as Knowledge-based Control, comes

from the Systems and Control discipline, as a branch which is traceable

back to a seminal paper by K.S. Fu [1]. Twenty years ago, he recognized

that automatic control should benefit from developments in Artificial

Intelligence (AI), if not vice versa. That these benefits have been so long

in coming, is a comment upon the difficulties inherent in AI development

and in transfer between two very different technologies.

The difference between traditional Modern Control and Intelligent

Control is that the embedded inference and memoryless control algorithms
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now contain qualitative, as well as numerical, processing elements. That
is, the inferences and resulting controls are focused on qualitative

performance measures, as well as numerical. As an adjunct to the usual

required numerical state-space modeling of the plant, now there is a

required modeling of qualitative states. The general pattern in intelligent

control of a dynamic system is as follows: First, the usual numerical state-

variable modeling of the plant takes place, with a preference given to

states which are available as sensor readings, or are, at least, easily

derivable (observable) therefrom. Next, a state-space is constructed,

which is the direct product space. Then, and most importantly, qualitative

states are defined as partitions of the direct-product space. These

qualitative states are most generally "operating modes," as defined by a

human operator. Such modes are not directly measurable, but are observed

by (human) inference processing of the available sensor measurements.

Control is then exerted to maintain or modify these inferred states (modes).

As an example, consider the guidance of the flight of a transport-type

aircraft. By guidance is meant an automation of the control activities

traditionally performed by the pilot. It is assumed that the usual numerical

automatic flight control system (AFCS) is present. Thus, the pilot concerns

himself with evaluation of flight performance and formulation of inputs to

the autopilot, to accomplish the goals of the flight.

The usual sensor readings are assumed to be available, as in Figure-I,

below.
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Figure 1. Raw Numerical Sensor List.
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Based on these available readings, and others derivable from them,

qualitative operating modes are defined, as in Figure-2.

MODE STATUS CONSTRAINTS

Takeoff

Clean_up
Climb out
Climb on course
Cruise
Descend on course
Vector

Initial_approach
Final_approach
Go around
Land
Unknown

Normal
Emergency
Alarms:

Systems,
Fuel.

Pilot in
Command.

Air Traffic
Control

Other

CONTROL MANUVER

Pilot
Computer/

Autopilot/
Flight Control
System.

Manuver
Power
Fuel
Systems
Weather

/ $1g pt OC/Irl sOIp$.l bl

Figure 2. Flight Mode List.

Given the sensor readings, mode is inferred and control exerted, based on

knowledge of the aircraft and of the rules of flight. Intelligent control, or

guidance, of an aircraft attempts to automate these high-level pilot

activities.

The list of operating modes is assumed finite, with mode_unknown

covering the rest of the possibilities. The required inference is decision,

rather than estimation, which is the usual numerical control inference.

That is, given a vector of sensor measurements, it is to be decided into

which partition of the direct-product space the observed "point" fits. Given

that decision, and knowledge of the recent history of aircraft state, an

input to the AFCS is then formulated, based on known mission goals and

characteristics of the aircraft.

Although the above paradigm sounds simple (and it is accomplished

routinely by human pilots) the automation thereof is not trivial for several

reasons. First, in the definition of operating modes, the partitioning of the

state space, is not clean. Although the operating modes may be unique,

their modeling in terms of the sensor variables may not be. Second, the

decision inference method is not obvious. This is because aircraft

operation may generate measured sensor data which conflicts with a mode



- 35 -

that is "essentially true". A classical example is a landing approach with

the landing gear retracted. Although the mode is "landing," the "gear

variable" value conflicts with the model definition of the mode. The

decision method must accomodate these anomalies. Finally, the method for

synthesizing qualitative commands, accompanied by numerical

prescriptions, based on qualitative performance interpretations, is also not

obvious. Fuzzy Control is one implementation method for Intelligent

Control which deals with many of these cited problems.

FUZZY CONTROL.

Fuzzy Set Theory was created by Zadeh [2] twenty-five years ago, in

the same time-frame as Fu's postulation of Intelligent Control. Within five

years, its use in decision theory was being examined [3]. Within nine

years, its use in control was being promoted [4]. Later (after 1986), it was

implemented in practical control systems [51.

For use in decision problems, Fuzzy Set Theory is similar to Bayes

Conditional Probability Theory, in the sense that events may be modeled

by set functions whose range is the positive reals. Moreover, these

functions may be manipulated to create similar positive real functions

defined on subsets of the original domain. Therefore, in both cases, the set

functions may be used to calculate the solutions of decision problems. It is

for use in control problems where fuzzy methods depart from the usual

Bayesian methods.

Figure-3 illustrates a simple case of fuzzy control. Therein, two

events are modeled by membership functions, ml(x ) and m2(x ). These

functions represent the membership of measured sensor values of input

variable, x, in the events El, E2, respectively. A control value, y, is to be

formulated according to a goal of driving the sensed value into the

quiescent point, x = 1.375. This is done by utilizing two control events,

with membership functions, m l(Y ) and m2(Y ) and an "IF-THEN" rule. The

rule is that if the input sensed value, x, belongs to event, E l, then the

output control value should be governed by m l(y ), and similarly for event,

E 2. Control is obtained by a sequential looping computation employing the
IF-THEN rule.
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Figure 3. Fuzzy Control Illustration.

A fuzzy aIgorithm is formulated by using the function values of the

input sensed variable, x, to modify the output functions in a process called

inference. The latter are then combined to produce a single output function

in a process called combination. Then, a single functional value of the

output is obtained by a non-unique transformation called, defuzzification.

The illustrated case models "correlation-product inference," "additive

combination," and "centroid defuzzification," as described in Kosko [6].

The sensed input events, modeled by m l(X) and m2(x), are defined by

two fuzzy sets, being {x E (.25,1.75)} and {x _ (1.0,2.5}, respectively.

Likewise, the output control events, modeled by ml(Y ) and m2(Y), are

defined by two fuzzy sets, being {y _ (1.0,2.5)} and {y E (.25,1.75)},

respectively. The algorithm shown in Figure 3 multiplies ml(x ) times

ml(Y ) and adds it to the product of m2(x ) times m2(Y ). The products

represent the intersection of the corresponding fuzzy sets. The sum

represents union.
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In fuzzy logic, there are two different representations of intersection

and union. One is given by the arithmetic pointwise product of membership

functions. The other is by the pointwise Min{'} function. Likewise, the

union is represented by either the arithmetic pointwise sum or pointwise

Max{'} functions. Bellman and Zadeh TM call the Min/Max pair hard

logical connectives and the Product/Sum pair soft. There are, therefore,

four possible implementions of the fuzzy control case shown in Figure-3,

being Hard/Hard, Hard/Soft, Soft/Hard, and Soft/Soft. The Figure-3

illustration is that for Soft/Soft, which I shall just call Soft Fuzzy Control.

Decision theory also admits the terms, hard�soft [7]. In the decision-

theory context a hard decision is an immediate one, whereas a soft

decision is one which is deferred for further processing of input data.

Fuzzy control does not actually make an immediate decision on which of

the input events has occurred. The IF-THEN control rule is not

implemented in a hard sense. Rather, a sort of average IF-THEN is used,

taking from each output function, proportional to the input membership

values. In a decision theory context, fuzzy control might be said to employ

soft-decision to yield soft decision-directed control [8].

From several standpoints, then, the fuzzy control case which is dealt

with in this paper may be labeled, soft. All fuzzy control is soft from the

decision-theoretic viewpoint. The present specific implementation is also

soft in terms of the logical connectives used. Now, I will show that it also

has a direct Bayes interpretation, or dual.

THE BAYES DUAL.

Let us define the input sensor variables, output control variables, and

events in the following manner"

z • The numerical control variable, a scalar.

x N = (Xl, x2, .., XN) " Sensor measurement vector.

A i : i = 1, 2, M 1 " Family of Event Sets, defined on x N•W B_

J
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The use of a centroid method for defuzzification suggests that the

output control membership function might profitably be modeled as a

probability density function. The usual Bayes approach is to use the

density of control variable, conditioned on input data. This control

membership function is denoted as p(z [XN). This is initially transformed,

using the usual Bayes transformations, as

p(zlx N) = p(ZAXN)/P(XN) (1)

where ("1 denotes the usual logical (soft fuzzy) intersection.

The decision and control events, Aj are brought into the formulation

in a standard way, by augmenting the joint density with the Sure Event, S,

defined in terms of the A i. These A i are intentionally designed so as to

cover all of the vector-space, XN, of interest (commonly called domain of

interest). These subsets, Ai, are given the decision-theoretic interpretation

of events, and are named distinctively in English. In the aircraft

application, they are called modes. Mathematically, then, we have the

definition,

M

UAi

i=!

= 5 • sure event; total space (2)

It follows that

M

p(zOxN) = p(z("lXNO(UAi) )

i=1
M

= p(U (z/') XNOAi) ) (3)

i=1

There is a distinction which must now be made between the intrinsic

events, Ai, and their modeling as subsets of a vector-space. The events

have a meaning all their own, independent of their models. For an aircraft,
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the event of "final approach" had a meaning of its own, long before state-

spaces models came into use. Therefore, we may define the events, Ai, to

be unique, or, in Bayes terminology, mutually exclusive, even though their

subset models are not disjoint. The fact that unique events are represented

by subsets which are not disjoint reflects a modeling choice, which injects

uncertainty into the model. As designers, we will choose the A i to be

unique and then do our best to model them as vector-space subsets.

Given mutually exclusive Ai, equation-(3) transforms to

M

p(ZI"}XN) = _ p(zl"}XNl"lAi); mutually exclusive A i

i=l

(4)

Now, in equation-(4), we invoke the model of the Ai, and interpret the

non-empty set, {XNNAi} , as the event, "A i occurs." That is, if an input

sensor sample vector, xN, has a non-empty intersection with Ai, we say A i

occurs. Figure-(4) illustrates this interpretation for x N a 2-vector.

A i

x, I

Figure 4. Vector Decision Illustration.

It is the practice in Fuzzy Control to model the input events on single

sensor variables, rather than on vectors (N-tuples). These models are the

familiar membership functions. Thus, we move now from decision based on

N-tuples to decision based on individual vector components. This we do by

considering the projection of the subset, Ai, onto its component axes
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(subspaces). We will define subsets, Aij , on each of the Xj axes as

Aij = {xj _ (Xl,X2,..,Xj,..,XN)I_A i is not empty.} (5)

These are illustrated in Figure-5.

X,

A i

--=i'-- I

I I

I I

t. J

All

x 1

Figure 5. Projection Decision Illustration.

Now, we shift from decision tests for Ai, based on events, {XNf'_Ai}

to a test based on

N

[xNoAi}. {xjnAi ] (6)

where the relation, "-", is an equivalence, not an identity. This is a sub-

optimum test, and it has a performance cost. It can be seen from the 2-

space illustration, above, that testing for x 1 in Ail and x 2 in Ai2,

separately, treats A i as though it were a rectangle enclosing the actual A i.

(We have actually replaced A i by the direct sum of its subspace

projections.

Continuing on with the arithmetic, we have now,
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M N

P(ZAXN) = Z p(zn(xjnAij))

i=l j=l

M N

= _ 1--ip(znxjnAij ) ; xj independent V j

i=lj=l

(7)

where we have restricted the xj to be independent. What this means in

application is that the sensed variables, xj, should be physically

independent, and not functional computations of one another. Then, the

joint density becomes a product over the modes.

Next, returning to the original conditional formulation of equation-

(l), we obtain

M N

p(z I XN) = Z lip( z I xjnAij)'P(Aij I xj)

i=lj=l

(8)

where P(XN) has canceled out of numerator and denominator.

By way of interpretation, the quantities, p(z IxjnAij) are the fuzzy

control membership functions, which have the form of conditional proba-

bility density functions. They give control density, conditional on the

event that sensor variables fall in projections of A i on corresponding sen-

sor variable axes. We call these projections "sub-events," or "sub-modes."

The quantity, P(Aij ]xj) , is the input (or sensor) membership function,

which is the posterior probability of sub-event (sub-mode), given

corresponding sensor variable.

Now, we make one last simplification of the notation, to arrive at a

final formulation. The quantity, p(z IxjnAij) is a control density, condi-

tioned on both event, i, and sensor, j. Although the mathematics supports

dependence on j, in practice these control densities are generally a func-

tion only of i, the identifier of the predefined mode. That is, control is

based only on knowledge of mode, and is not differentiated as to which
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sensor supplied that knowledge. Thus, we will simplify as

p(z Ixjf')Aij) ---- p(z i Ai)

and there will be only M of these, rather than M'N.

Also, P(Aij I xj) may be notationally changed without changing its

meaning, as

P(Aijlxj) ---" P(A iIxj)

and there are stilI M-N of these. Then, equation-(8) becomes

M N

p(z [XN) = y_ p(z IAi)-I"IP(Ai Ixj)

i=l j=l

M

= _p(z IAi)'P(A i IXN) (9)

i-1

The two-fold internal product, p(-)-P(.), is the weighting of control

membership by the net sensor membership. The N-fold product over the

sensors is equivalent to the N-fold intersection over the sensors, for a

particular mode-event, where "product" is the soft version of the hard

fuzzy intersection, "min". The M-fold sum over the events is equivalent to

the M-fold union over the events, where "sum" is the soft version of the

hard fuzzy union, "max ''[3].

The algorithm of equation-(8) is equivalent to the fuzzy control

method known as "correlation-product inference, additive combination ''[6].

The control density may be defuzzified by the centroid method (dual to the

Bayes, conditional-mean), if the density is single-moded. Otherwise, the

Bayes MAP method [9] may be used (yielding the control value for which the

combined control density is maximum).
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The quantities, P(Ai Ixj) , are the posterior probabilities, which might

be used to make a hard decision. The N-fold products of these, over j, can

be used to make the hard _Z,A_, decision on the occurrence of one specific

mode-event. However, fuzzy control does not make such a hard decision.

Rather, the control densities for the M specific possible mode-events are

weighted by the MAP decision probabilities and then averaged. This

suggests the characterization of fuzzy control as soft-decision-directed. An

alternate Bayesian view is that fuzzy control is an averaged control, where

the average is over an ensemble of multiple, uncertain, competing events.

EXAMPLE.

120 160

1
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_ "I-

I

I

I

I

I

i
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Figure 6. Landing Gear Membership Functions.

Figure-6 shows a realistic example of reduced dimensionality for

fuzzy control of aircraft landing gear. The rule is, "extend gear on final

approach." Only two possible flight modes are illustrated, which are

contiguous. They are Final Approach, APPR_FNL, and Initial Approach,
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APPR_INIT. Only two sensor variables are illustrated, being Indicated Air

Speed, IAS, and Flap Position, FLAPS. The control variable is GEAR.

The antecedent and control membership functions are diagrammed.

Note that the functions for FLAPS and GEAR are discrete and the values

for GEAR are linguistic, rather than numeric. Dashed lines indicate the

functions for Initial Approach, while solid lines indicate Final Approach.

Because the control variable is discrete, the method of defuzzification

chosen is _xC.,qp.

IAS 200 170 160 150 140 130 125 120

P(INIT) ] 1 ] 0.75 0.5 0.25 0 0

P(FIN/) 0 0 0 0.25 0.5 0.75 1 l

FLAPS 0 5 10 ] 5 25 30 40 40

P(INIT) 0.25 0.5 0.75 ] 0,5 0 0 0

P(FINL) 0 0 0 0 0.5 1 1 1

II(INIT) 0.25 0.5 0,75 0.75 0.25 0 0 0

Iq(FINL) 0 0 0 0 0.25 0.75 1 1

MODE INIT INIT INIT INIT INIT FINL FINL FINL

P(UP) 0.25 0.5 0.75 0.75 0.25 0 0 0

P(DOWN) 0 0 0 0 0.25 0.75 1 1

GEAR UP UP UP UP UP DOWN DOWN DOWN

gea=JM.tb_

Figure 7. Computational Table.

Figure-7 shows a table of the various computations for this example.

The flaps are operated according to a specific manuvering-speed table for

the Boeing-737. The Table is divided into four blocks for Speed, Flaps,

Mode, and Gear, and is read vertically. The membership function values

for the two approach modes, INIT and FINL, are shown versus IAS in the
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first block. The membership function values for the two approach modes

are shown versus FLAPS in the second block. In the third block are the

values of the membership function value products, taken over each mode

and denoted by 1-I(-), corresponding to the first part of equation-(9). From

these products the corresponding mode decisions are also shown. In the

fourth block are shown the modified values of control membership

functions (correlation-product, additive combination) for GEAR_UP and

GEAR_DOWN, respectively. Also shown is the final control, defuzzified

by MAP.

From the Table, it is seen that the landing gear does indeed cycle

from up to down when the mode decision changes from initial_approach to

final_approach. In fact, it can be seen that the mode-decision products,

17(-) and gear control values, P(.) are identical. This is because the gear

control membership function is crisp, rather than fuzzy. In general, the two

computations will not yield identical numerical results, although the mode

decision and control action should always be commensurate.

CONCLUSION.

The reader will observe that nowhere in this paper have I made

reference to any epistemological arguments concerning fundamental

differences in the fuzzy or Bayes approaches. No appeals have been made

to differences based on uncertainty versus randomness. Rather, my

approach has been to find similarities, to look for correlations. This paper

attempts to interpret the structures of fuzzy control, being its modeling

facilities and functional transformations. Since some of these resemble

corresponding facilities in the Bayes decision, estimation, and control

discipline, my interpretations have been in the Bayes context. What I have

concluded is that Bayes is a useful spotlight to shine on fuzzy control.

What this paper shows is that fuzzy control may be easily interpreted,

and therefore pragmatically applied, in terms of decision and averaging

concepts familiar in the (Bayesian) signal processing and control world. To

me, if fuzzy can be said to have beauty, it is that it is essentially geometric

in concept, rather than algebraic. Application of fuzzy to control reduces
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and modularizes complexity, rather than increasing it. And, this reduction

is due to the available geometric interpretation of fuzzy modeling and

transformation. Where discrete-time stochastic control applications

become lost in a haze of algebraic complexity, fuzzy control remains

refreshingly clear. Because fuzzy is modular control, design and software

implementation under the modern object-oriented schema is attractive.
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ABSTRACT

This paper examines a fuzzy control implementation for aircraft wing

flaps for a transport-type aircraft. The implementational methods used

were correlation-product inference, [1] additive-combination technique, [2]

and maximum-membership defuzzification. It was discovered that with

fuzzy flaps control, when the instantaneous data does not provide enough

information for flight mode interpretation, memory must be introduced.

Furthermore, it was discovered that tuning of wing flap extension decision

points can be accomplished by a selected set of tuning rules.
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INTRODUCTION.

This paper shows the results of an object-oriented implementation of

wing flap control for a transport-type aircraft. The research has been

supported by a NASA Training Grant, with technical support from the

Aircraft Guidance and Control Branch at NASA Langley Research Center

in Hampton, VA.

The test-bed was a piece-wise, linear, longitudinal simulation of a

Boeing 737-100, written in the language C. The simulation was operated

through an interactive graphical user interface, written in EIFFEL by a

colleague. [31 The controller was, also, implemented in EIFFEL. EIFFEL is

a pure, object-oriented language.In]

The objective of this study was to examine the practical design

aspects of combining correlation-product inference, additive-combination

technique, and maximum-membership defuzzification.

SELECTION OF FUZZY CONTROL TECHNIQUES.

In general, fuzzy control utilizes a collection of fuzzy rules, or Fuzzy

Associative Memories (FAMs). [1] Each FAM is a transformation that maps

a logical combination of fuzzy input sets onto a fuzzy control set [1] ._ i.e.,

fuzzy inference. Each fuzzy rule is part of a collective of rules, called a

FAM system, which are fired in parallel. The resulting fuzzy output sets

are then combined to form a "combined output set." For most practical

applications, the combined fuzzy set must be defuzzified to produce a

single control value.

Two inference schemes are commonly used in fuzzy control:

correlation-minimum inference, and correlation-product inference.[ 1]

Geometrically, they are known as clipping and scaling. Correlation-

minimum inference results in a point-wise minimum of the antecedent

result with the control membership function (clipping). Correlation-

product inference results in a pointwise product of the antecedent result

with the control membership function (scaling). Correlation-product

inference preserves the information contained in the shape of the control
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membership function. [1] It was for this reason that correlation-product

inference was selected instead of correlation-minimum inference for this

study.

Two popular combination methods are maximum-combination

technique and additive-combination technique. |2] Maximum-combination

takes a pointwise maximum between the resulting FAM outputs.

Additive-combination forms a pointwise linear combination between the

FAM outputs. One problem with the maximum-combination technique is

that the combined output set tends to a uniform distribution as the number

of non-zero output sets increases. [2] In other words, control sensitivity

decreases with increasing number of FAMs fired. According to Kosko, this

problem can be avoided by using the additive-combination technique. [2]

The desensitizing effect caused by the maximum-combination

technique was negligible with this project, since only a small number of

rules (three to five) fired at non-zero values at any given time. However,

the additive-combintation technique has an interesting side-effect that is

worth studying; that is, rules fired with overlapping control sets produce a

cumulative effect, showing more "causes" to support a control decision. For

this reason, the additive-combination technique was selected for this study.

There are two popular defuzzification schemes: maximum-

membership defuzzification, and fuzzy centroid. [1] Maximum-membership

defuzzification selects the value of the independent variable, at which the

combined fuzzy output set is maximized. The fuzzy centroid method, on

the other hand, uses a "center of mass" computation. For this experiment,

we decided to use maximum-membership defuzzification, since the control

space for wing flaps consisted of only a few discrete values. Mulitple

maximums were resolved with a median.

In summary, the implementational techniques selected for this project

were correlation-product inference, additive-combination technique, and

maximum-membership defuzzificati0nl
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DISCRETE FUZZY FLAP CONTROL.

The fuzzy rules, or FAMs, for this project were derived from a set of

operational guidelines located in the American Airlines 737 Operating

Manual. [5] (Note, the results of this research do not reflect the opinions of

American Airlines.) The heuristics for flap management are"

1) "Extend flaps to the next setting before decelerating

below the maneuvering speed for the existing flap setting."

2) "While accelerating, retract flaps upon reaching the

maneuvering speed for the existing flap setting."

The study focused primarily on the approach and landing phases of

flight; however, to round off the control system behavior, rules for flap

retraction were also included. Table 1 lists the flap control rules. (These

rules were based on "no wind" conditions.)

Membership Functions.

The primary antecedent sets were continuous fuzzy sets dependent

on acceleration, flight path angle, and indicated airspeed (ias). To prevent

erroneous control decisions, the sensors for acceleration, and flight path

angle were low-pass filtered before being used. Notice that the ias

membership functions were based on the flap maneuvering speeds

(Figure 1).

The independent axis for the control membership functions represents

the allowable discrete flap settings: 0, 1, 5, 10, 15, 25, 30, 40. There are

four basic types of flap membership functions. The first is a crisp single

discrete type, like flaps_l which has a non-zero value of unity at 1. The

second is a crisp multiple discrete rectangular type, like flaps 0 1 5 that

is unity for values 0, 1, and 5, and zero elsewhere. The third and forth are

fuzzy multiple discrete types. For example, flaps_usually 5 is unity for

flaps 5, and 0.2 for the other flap settings; and descend_hysteresis_f0 is

unity for flaps 0, and 0.8 for the other flap settings.
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Implicit Flight Modes and Memory.

The first observation that can be noted is that fuzzy flaps control

includes an inherent flight mode decision -- specifically, a decision

between "approach" and "climb out". For example, the antecedent

subclause of "decelerating and non_pos_fpa" indicates "approach,"

while the antecedent subclause of "accelerating and non_neg_fpa"

indicates "climb out".

m(v) F25 F15 FIO F5 F1 FO
/ ms ms ms ms ms ms FO spd

1.

130 140 150 160 170 180 190 200 210 220 230 V

IAS (knots)

Figure 1. IAS Membership Functions.

During the initial design and test phase, it was observed that under

certain conditions -- constant speed, and level flight-- that there was not

enough information for an instantaneous flight mode decision. Under these

circumstances the controller would not be able to decide if the airplane

was climbing out or approaching. One solution was to add a rule telling

the controller to leave the flap setting alone, if constant speed was

determined (provided ias operating restrictions were not violated). Such a

solution involves remembering the last flap control decision. This was

accomplished by reading the existing flap setting at the time of decision.

Rules 36 through 44 are memory rules. (See Table-l, below.) They interact

with the airspeed rules at constant speed to accomplish the result.

For example, assume that flaps are currently set at 5, and that the

constant speed antecedent fires stronger than the deceleration or

acceleration antecedents. Additionally, assume that the indicated airspeed

is strongly indicated to be in the flaps 1 maneuvering speed region. Then,
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rule 9 will fire strongly, indicating that either of flaps 0, 1, or 5 are

permitted for this airspeed. Rule 38 will also fire strongly, indicating that

the existing flap setting is preferred. The resulting combined output set

will have a maximum at flaps 5, causing flaps 5 to be selected. Now,

suppose that instead of an existing flap setting 5, we had a flap setting of

10. Then, Rule 39 will fire (instead of rule 38), indicating that flaps 10 is

preferred, but any other flap change could be made. However, since flaps

10 is not one of the permitted flap settings for this airspeed (rule 9), the

combined output function will have maximums at flaps 0, 1, and 5. The

median of these (flaps 1) will be selected.

Tuning Rules.

After adding the memory rules, the control system consisted of rules 1

through 44. As can be easily predicted, flap extension and retraction

occurred at predictable ias "crossover" points. For example, when the

airplane was decelerating and descending (flaps currently 0), the control

system extended to flaps 1 when the ias decelerated past 220 knots. This

220 knots threshold is the crossover point between the antecedent

membership functions f0_spd and f0ms. (ie., The control system decided

that the airplane was in "approach" flight mode and was decelerating

towards the flaps 0 maneuvering speed. Therefore, flaps needed to be

extended to the next setting.)

Now suppose it is desirable to extend the flaps to 1 "later" than 220

knots, but still before dropping below the flaps 1 maneuvering speed. This

can be accomplished by adding tuning rules. To test this idea, a few

sample tuning rules were added to adjust the extension points for flap

settings 0, 1, and 5 (Rules 45, 46, and 47). The shape of the control

membership functions for these tuning rules was adjusted empirically. For

example, flaps 1 extension was shifted to 116 knots by Rule 45. However,

the design was not without problems. Because of the cumulative effect, the

acceleration membership functions had to be retuned carefully (this was

done empirically, also) to make the "tuning" rules work properly. In other

words, the rules firing with the deceleration antecedent had to have a

greater cumulative effect than the rules firing with the ¢onst_spd

antecedent.
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CONCLUSION.

The fuzzy control rules were evaluated on an interactive simulation

test-bed. The rules were designed with approach and landing phases of

flight as the goal environment; "test flights" concentrated on approach and

landing scenerios. Acceleration conditions were specified only to

complete the FAM system, and were briefly tested to verify that the FAM

system was behaving properly.

There is no well-defined performance measure for "flaps behavior."

However, the airplane configuration was maintained to stay well within the

operating limits of the flaps, and within the American Airlines specified

guidelines for flap extension and retraction. (Note: if such a system is to

eventually be used in commercial flights, the flap rules would need to be

tested and retested by certified pilots under realistic flight conditions.)

This design project examined the aspects implementing fuzzy control

in the context of aircraft wing flap control. In particular, the study focused

on the practicality of designing with correlation-product inference,

additive-combination technique, and maximum-membership

defuzzification. It was found that for complex fuzzy control applications

the use of memory is often imperative. Furthermore, the usefulness of this

implementation scheme was enhanced by the addition of tuning rules.

These rules added flexibility to the control system by providing a means

for the user to adjust the point at which extension (or retraction) occurs.

During the memory and tuning rule design phases, the design

complexity inherent with the additive-combination technique was

revealed. If one is not careful, the cumulative effect of this technique can

lead to unexpected and undesired control results. For this reason, it is very

important that the rules be tested thoroughly, and membership functions

carefully tuned. Furthermore, for complex problems, the additive-

combination technique's cumulative effect can produce rules and rule

combinations whose purpose is not immediately transparent or easily

understood by the casual observer. Finally, all of the membership set and

rule tuning had to be done empirically.
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Thus, the additive-combination technique, while adding design
flexibility, may add unnecessary design complexity. For example, if an

airplane company was to implement a similar wing ftap control scheme, it

would be desirable for the rules to be easy to understand and maintain by
multiple users. It was discovered that the cumulative effect of the

additive-combination technique, can produce complex rule interaction that

makes design errors more likely. Comparative research is currently
underway to examine the practicality of using maximum-combination

technique in place of the additive-combination technique.
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Table 1. FAMS for Flaps Control.

FAM

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35

36
37
38
39
40
41
42
43
44

45
46
47

Description

If f0_spd then flaps 0
If f0ms and decelerating and non_pos_fpa then flaps_l
If f0ms and decelerating and pos_fpa then flaps_0
If f0ms and const_spd then flaps_0_l
If f0ms and accelerating andnon_neg_fpa then flaps 0
If f0ms and accelerating and neg_fpa then flaps_l
If flms and decelerating andnon_pos fpa then flaps_5
If fires and decelerating and pos_fpa then flaps_0
If flms and const_spd then flaps_0_l_5
If flms and accelerating andnon neg_fpa then flaps 0
If flms and accelerating and neg_fpa then flaps 5
If fSms and decelerating andnon_pos_fpa then flaps 10
If fSms and decelerating and pos_fpa then flaps 1
If fSms and const_spd then flaps_l_5_lO
If fSms and accelerating andnon_neg_fpa then flaps 1
If fSms and accelerating and neg_fpa then flaps_10
If fl0ms and decelerating and non_pos_fpa then flaps_15
If fl0ms and decelerating and pos_fpa then flaps_5
If fl0ms and const spd thenflaps_5 10_15
If fl0ms and accelerating andnon neg_fpa then flaps 5
If fl0ms and accelerating and neg_fpa then flaps_15
If flSms and decelerating and non pos_fpa then flaps 25
If fl$ms and decelerating and pos_fpa then flaps_10
If flSms and const spd then flaps_10_15 25
If fl$ms and accelerating and non_neg_fpa then flaps_10
If fl$ms and accelerating and neg fpa then flaps_25
If f25ms and decelerating and non_pos_fpa then flaps_30
If f25ms and decelerating and pos_fpa then flaps_15
If f25ms and const spd then flaps_lS_25_30
If f25ms and accelerating and non_neg_fpa then flaps_15
If f25ms and accelerating and neg_fpa then flaps_30

If land takeoff_spd and decelerating then flaps_30_40
If land-takeoff spd and const_spd then flaps_30_40
If land-takeoff spd and accelerating andnon_neg_fpa then flaps_15
If land"takeoff spd and accelerating and neg_fpa then flaps_40

If flaps_O and const_spd then flaps usually_O
If flaps_l and const spd then flaps usually_l
If flaps_$ and const-spd then flaps"usuaiiy_$
If flaps_lO and const_spd then flaps_usually_lO
If flaps_IS and const_spd thenflaps usually_IS
If flaps_25 and const_spd thcnflaps usually 25
If flaps 30 and const_spd thenflaps_usually_30
If flaps_40 and const_spd thenflaps usually_40
If flaps_40 and decelerating then flaps_usually_40

If flaps_O and decelerating andnon pos fpa then descend_hysteresis_fO
If flaps_l and decelerating and non_pos_fpa then descend_hysteresis_fl
If flaps 5 and decelerating andnon pos_fpa then descend_hysteresis f5
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ABSTRACT.

This paper discusses the implementation of a Flight-Mode Interpreter for

a commercial jet airplane, whose purpose is to assist the pilot in managing the

complex job of controlling the aircraft. The Interpreter is based on a joining

of the disciplines of Bayesian decision theory and Artificial Intelligence. The

A.I. contribution is from the areas of Decision Science, Fuzzy Set Theory and

Abductive Inference.
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INTRODUCTION: Knowledge-based control.

The knowledge-based control problem addresses the need for robust

control required in a dynamic system. Classical control techniques work well

when the parameters of the system (plant) which is being controlled do not

vary far from their nominal values. In order to control a plant whose state may

change drastically over time, extremely robust control (beyond that which

classical control can offer) is needed. This control, until recent years, often

was exerted by a human operator making adjustments to the controls of the

plant. The major difference between the human operator and a classical

control system is the human's reasoning capability. For example, the human

reads the input (from a gauge) and induces the general condition of the plant

from the specific data. The knowledge of that general condition, combined

with knowledge of how to adjust the plant's specific inputs to achieve the

desired control (rules and reasoning) allows the human operator to robustly

control the plant (a deductive process).

Knowledge-based control seeks to create software that is able to induce

the state of the plant from sensor data and then deduce the proper inputs to

the system (using techniques such as Fuzzy Logic and Qualitative Reasoning)

to control it. In an airplane cockpit, for example, the amount of information

(from computers and sensors) that a pilot must be able to assimilate has

increased to the point where it is easy for critical information to be

overlooked. A knowledge-based controller could monitor ALL pertinent

information in real-time, alert the pilot to unusual conditions and even take

action, if that is desired.

This present work is concerned with embedding artificial intelligence

into an aircraft guidance and control system. The required architecture breaks

down nicely into four major parts, being: Interpreter, Controller, Blackboard

and Graphical User Interface (GUI) [Figure 1] _.

The subject of this paper is the Interpreter, whose research is parallel to

research efforts on the other parts. The Interpreter's function is to infer the

present state of the airplane, along with a measure of "how good" the inference

is, from the values provided by sensors in the system. The Meta-controller,
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Figure 1. Top-level Architecture.

using sensor information and knowledge of how to control the system,

provides the proper inputs to the airplane to bring it to the desired state. The

Blackboard provides communication between modu]es, and is a good

architecture for formalizing the inter- module communications interface. It

provides for easy integration of additional software modules in the future. The

GUI is designed to keep the human operator "in the loop;" allowing that

person to monitor the interpretations made and control exerted on the system,

and to modify or override them, if necessary.

The Interpreter, completely realized in software, works with a two-

dimensional (longitudinal axis only) simulation of a modern, commercial

passenger jet. This piece-wise linear numerical simulation produces raw flight

data (airspeed, altitude, rate-of-climb, etc.) in response to standard pilot

inputs. The linear numerical simulation was developed by Glass 2

The Interpreter analyzes numerical data from the aircraft sensors. From

this data, it identifies which one of a set of pre-defined flight conditions

represents what the aircraft is doing. These flight conditions, by nature, are

qualitative, "fuzzy" concepts. There is no single set of sensor values that

indicates a given state, exclusively. Rather, a human pilot would decide that
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the plane is landing, for exampIe, because the plane is near the runway, the

airspeed is in the vicinity of landing velocity, the flight-path-angle is about

right, etc. These italicized words suggest the fuzziness of this decision

process. In order for a computer to deal with this type of decision-making, it

must be able to make fuzzy, qualitative, "uncrisp" decisions from "crisp"

data 3.

A study of the literature available on fuzzy logic and decision-making

has revealed that methods for fuzzy decision-making are quite similar to

standard Bayes decision-making 4. Some relaxing of the basic assumptions of

Bayes theory were made, to supposedly make the mathematics of Fuzzy Logic

a bit more tractable. Unfortunately, this relaxing sacrificed the ability to use

Bayes Decision Theory in the fuzzy context. It is proposed that embedding

fuzzy decision in a Bayes framework can support the fuzzy decision process,

without sacrificing the integrity of Bayesian analysis. We call this "Fuzzy-

Bayes Decision."

The basic concepts used in fuzzy decision-making are simple. In the

most elementary case, there is one input from which one decision is made. In

classical Bayesian decision-making for a case like this, a priori density

functions (relating a possible decision to an input variable) are used in a

simple calculation to give the posterior probability that a given decision is the

correct one. These density functions reflect prior knowledge of the system

being modeled. When these posterior values are calculated for each possible

decision, the one with the highest probability is selected as The Decision.

This is more specifically referred to as the "M.A.P Decision Rule" (Maximum

A posteriori Probability).

Fuzzy and Bayes theory give a groundwork for the decision-making

process in the interpreter module. However, theoretical extensions are needed

in order to make decisions in the presence of incomplete and/or conflicting

data. For example, if the airplane were making a landing approach but the

pilot had not lowered the landing gear, all of the plane's sensors, except

GEAR, would suggest that the flight mode was LANDING. Hence, the

Interpreter ought to be able to determine that the pilot is preparing to land the

plane but has forgotten to lower the gear. It should then notify the pilot of the

situation.
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Abductive Inference/Assembly 5 provides one method for making

decisions in the presence of incomplete/conflicting data. This technique,

combined with Fuzzy-Bayes, "entertains" the postulation that the plane is in a

particular state. As more observations of the sensor data are processed, the

"belief" in that postulation is either strengthened or weakened. If it appears

that an individual reading is in conflict with other readings, further processing

is done.

The software for this project was chosen to be implemented using the

Object-Oriented (OO) programming paradigm with the language, Eiffel. A

project of this nature lends itself to the OO design methodology because it

deals with definite, real world objects (airplane, pilot, cockpit controls, etc.).

OO methodology allows the design of software modules that represent these

objects. This aids in the identification of what modules need to be developed

(what their functionality will be), since the modules are designed to "act like"

the physical objects they represent.

The OO paradigm also is a great help in working in a software

development group. Information hiding (disallowing other modules direct

access to the internal data structures and functions of a module) requires that

the different developers/programmers in the group only be concerned with a

specified interface to the other modules of the project. This allows for the

decoupling of one developer's work from the rest, freeing him or her from

time- consuming familiarity with others' code.

Generieity (objects designed with reuse in mind) and Inheritance

(sharing common behavior and structure of related objects) are also

particularly important to a software project in a group programming

environment. Having modules that are "reusable" can reduce the overall

development time of a software project.

INTERPRETING FLIGHT MODE FROM MULTIPLE SENSORS.

A mode is defined to be an event. In the Abductive context 5, this event is

treated as a "Compound Hypothesis;" a compounding of "sub-events," called

"elementary hypotheses." Each sub'event is the coupling of a mode with a

particular sensor variable value, such as indicated airspeed (IAS). Thus, for

instance the compound event, "APPR_INIT" (initial approach) is determined
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from sub-events, "APPR_INIT given IAS," "APPR_INIT given FLAPS," etc.

Each sensor variable supports the definition of a number of unique

events. In the language of Bayes, this means that the events are mutually

exclusive (in a given instance, no two of the events defined on a sensor can

simultaneously occur). This does not mean, for example, that a single value of

IAS can not correspond to two different sub-events. The fact that two different

sub-events can each be represented by the same IAS value is simply an

uncertainty, or imprecision of the modeling of events on IAS.

Decision Confidence Measure: Elementary Hypotheses.

The abductive decision of flight mode is built up piece-wise, using

partial decisions based on each sensor. To do this we need a numerical

decision measure and a decision strategy. The strategy is to take a sample

value of a sensor variable and use it as input to a function which returns the

decision measure. The appropriate Bayesian measure is of the form:

P(Ailx ) ; 0 < P(') -_ 1

where P(.) is a measure of Bayes posterior conditional probability. The

decision rule is to decide "sub-event m" such that

M

Max [P(Ai Ix) ] = P(Am Ix)

i=l

=_, 'event - m'

This is the M.A.P. decision rule. The value, P(A m IXo), where x o is the unique

sample value of sensor variable, x, is also a "Confidence Measure" or

"Confidence Factor" on the decision,

In the Fuzzy Control context, the P(Ailx ) are the sensor membership

functions. As mentioned before, they can be computed from prior knowledge

of the application or from models of the a priori probability densities. The

latter computation is given by
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M

P(Am Ix ) = p(x ]am)/_ p(x IAi)

i=l

where there are M possible sub-modes. Note that the p(x [ Ai) are densities,

normalized to unit area, while the P(Ailx ) are probabilities, normalized to unit

amplitude. The p(x [Ai) are sometimes easier to model directly than are the

V(Ai Ix).

Compound Decision: The Extension.

Now, we wish to model the case where we have a collection of possible

modes and a collection of sensors by which to decide upon a single mode.

What we have to work with may be thought of as an array of membership

functions (confidence measures) of the form P(Ailx ), where

l<i<M : denotes M modes, and

I<j<N : denotes N sensor variables.

0 0 0

We take a set of measured values, (x 1 ,X 2 ,...,X N ), which we may think of as a

vector, x. We define the event, Ai, as a subset in the vector space generated by

the xj (Cartesian product space if the xj are numerical). We test x to make the

decision on the occurrence of the event, A i. If xl")A i is not empty, then we say

"A i occurs." The decision is not "hard," because we shall create a measure of

confidence in the occurrence of A i from the membership functions.

It is the practice in Fuzzy Control to utilize one-dimensional membership

functions (those which depend on just one sensor variable). Thus, we shall

have to deal with the event, Ai, one variable at a time. This we do by defining

"sub-events," Aij , which are projections of A i onto its various sensor-variable
N

axes (see [4] for details). Then the decision rule becomes "A(xj(')Aij ) not

j=l

empty implies A i occurs." This method of defining sub-modes is exemplified

in Figure-2 for aircraft, using the IAS and ROC (rate of climb) variables.
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Figure-2. Sub-mode Definition.

The Bayes (or Soft Fuzzy [4]) decision is then made by applying the
N

M.A.P. decision rule to the joint probability density, p(N(xjNAij)). Given

j--1

that the sensor variable, xj, represents (probabilistically) independent

measures of the event, Ai, the same decision will also be obtained by applying
N

the M.A.P. rule to the arithmetic product, I-[P(Aij I xj), where the P(-) are the

j=l

individual membership functions.

Abductive Decision : Conflicting Evidence.

Now, let's see what all this means when we have conflicting evidence

and more than two sensor variables. The classic example is a gear-up landing.

We'll use it to illuminate our decision strategy.

If we plot membership function values on a MODE-SENSOR plane for a

gear-up landing, it might look like Figure-3. IAS, ROC and FLAPS have

appropriate values for the LAND mode, but GEAR is zero (gear-up). GEAR

looks more appropriate to Initial Approach (APPR_INIT) or Descend on

Course (DSC_ON_CRS).

Now, the question is, how can we still decide LANDING correctly, but

call out an ALARM_GEAR? If we adopt a "Parallel-Experts" approach (an

architecture using multiple "expert objects" that "know" about a particular

domain) 6 , the first question is whether to organize the experts as
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Sensor Experts or Mode Experts. We have chosen to use Mode Experts. And

that goes along with our M.A.P. strategy.

The question now is, what to do about the gear sensor variable. If the

"gear-up" membership value (zero) is accepted as valid information, it comes

against the IAS, ROC and Flaps information in terms of establishing

LANDING as the current mode. Hence, we should expect the confidence of

the compound decision, LANDING, to be reduced from what it would be for

"gear-down." But, since the GEAR variable is binary, if it is not 1, it is 0,

which destroys the M.A.P. product. (A 0-1 membership function is not strictly

fuzzy, but "crisp.")

MODE t

DESC_ON_CRS .._ .... ,_,. - - - 4.-. - - -_.. - - - J,

APPR_FNL_-- "" "" "" ""
---\

.... SENSOR
IAS ROC FLAPS GEAR

Figure 3. Example: Gear-up Landing.

So, we calculate the confidence value as described above, but exclude the

0 value of the gear membership function, and flag the GEAR variable to

indicate that it is out of range for mode LANDING. This is the gear alarm.

Then, along with the M.A.P. rule, which chooses the mode with the greatest

confidence value, the alarm set on mode LANDING is also taken into account

when choosing the "winning" mode. This is the point where abduction is

crucial. The act of "the first stating a hypothesis [choosing a mode] and the

entertaining of it, whether as a simple interrogation or with any degree of

confidence" is defined to be abduction. 5 And that is exactly what is being done

here.
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RESULTS.

The first-pass results of the Object-Oriented, Fuzzy-Bayes, Abductive

Interpreter have been very encouraging. Under normal flight conditions (no

alarms) the Interpreter selects the proper flight mode with confidence values

often reaching the maximum value of 1.00. The most critical step in creating

the Interpreter was the creation of the one-dimensional, fuzzy membership

functions. A flight manual for the airplane being modeled was obtained which

provided the a priori information needed to construct them. The most time-

consuming work done thus far has been the "tuning" of these to this

application. That is, adjusting the shape and value of the membership

functions to truly reflect the relationships between sensors and modes.

CONCLUSION.

The value of the research, to this point, is in its potential to aid in the

control of systems of growing complexity. The human operators of these

systems are being supplied with an increasing amount of information which

must be assimilated in order to control the plant (an airplane, in this instance),

increasing the probability of an error being made. In a cockpit, a working

Interpreter provides a system which can discover potential problems (e.g.: no-

gear landing) and warn the pilot before they become life-threatening ones.
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ABSTRACT.

This thesis reports the results of research to create a Graphical User

Interface to support a Knowledge-Based controller. The objective is to

investigate the environment of object-oriented programming techniques. The

application is a graphical user interface for a simulated Boeing-737 flight

management system. All research uses the Eiffel programming language. This

research was supported, in part, by the National Aeronautics and Space

Administration, Langley Research Center.
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THE GUI AS A SYSTEM COMPONENT.

A knowledge-based controller may be subdivided into four entities: a

symbolic controller, a symbol interpreter, a user interface, and an internal

blackboard. The symbolic controller (meta-controller) exerts control on the

numerical controller to produce the desired goals. The symbolic interpreter

(interpreter) gathers raw numerical data from the dynamic system and decides

what mode the system is in. The user interface acts as a symbolic input/output

device for the operator and makes the system useable and practical (Figure 1).

The blackboard is an internal data controller that coordinates communication

between the subsystems.

, ......... r.-- ...................... T................................... ':

- _.J Aircraft / I Data , I I I I : . .
I_ D.namicsr_vn_mi_Q_Sensorsl . ," :.;Flight/Ops. = :J Graphical I..._ser

-' ....... / I I , J_nterpreter / ----i User _ I/O
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Figure 1. Architecture

The application described in this thesis is a graphical user interface

(GUI) for a knowledge-based controller. The objective of the research effort

is to produce an object-oriented GUI capable of managing the input/output

flow of data relative to an aircraft flight management system. The goals of the

flight management system are to control the aspects of normal flight cruising,

final approach, and landing for a simulated Boeing-737 transport aircraft.

A GUI's role in a dynamic system is to be an "impedance-matching"

device for information exchanged between the dynamic system and the human
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user. A GUI must be designed so that only a minimal amount of information is

lost or misinterpreted when a user accesses the system. The user must be able

to grasp all relevant information and manipulate inputs to the system in a

timely manner. Also, it is widely accepted that a good user interface will not

give the user an option of choosing illegal actions or a combination of
actions[1].

The designer of an aircraft GUI should keep in mind the type of

individual who will be using the system. Bearing in mind that the user is
assumed to be a qualified pilot, an aircraft GUI should contain all the

necessary information to fly an aircraft within a recognizable, graphical

format. A standard aircraft instrument cluster and command inputs are
essential.

Here, the GUI contains a standard instrument cluster, directional controls

for the autopilot, and an interface for the flight management system.

Consistent with object-oriented software properties, this application
implements a basic GUI architecture useable for more than just an aircraft

application. This multi-use structure is applied to internal components such as

communication routines, animation techniques, and functional loops. Object-
oriented programming assists with the emphasis on the reusability of the GUI.

A successful implementation of object-oriented programming is another

goal of this research. Object-oriented programming is a utilization of
software engineering to produce higher quality software, which is gaining

momentum within the software engineering community. Object-oriented

techniques aim to produce software that is reusable, flexible, and easily
modified.

Based on this defined problem statement, this chapter contains a detailed
description of the GUI, its functions, and its structure. In addition, the

theories of object-oriented programming are evaluated and justified for this
application.
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FUNCTIONALITY ISSUES.

INTRODUCTION.

Layout and functionality are important design considerations for any

GUI and are legitimate research topics themselves. Concerning this GUI,

design effort was placed on functionality but was not a central theme for this

project. This was decided because there did not exist a large mass of

information that needed to be exchanged in some sort of multiplexed or

condensed format. Also, the user is expected to be a pilot who is considered

an expert in aviation. A pilot does not require explanations of most of the

information given; he or she needs only a reasonably fast, simple interface.

The layout of the GUI is divided into three sections: the output, input,

and guidance sections. The first section is the output section containing the

flight instruments and other sensors. The flight instruments are designed to be

visually realistic, functional, and simple. The second section contains the

autopilot input buttons that manually fly the simulation. The autopilot input

buttons were designed to be uncluttered and simple. The last section is the

guidance section, which handles all input/output for the meta-controller and

the interpreter. The guidance section is designed to be useful and versatile.

OUTPUT SECTION.

The flight instruments (gauges) in the GUI are designed to maximize the

information transferred to the pilot by use of instruments that would be found

in a comparable Boeing-737, series-200, aircraft. There exist six standard

instruments on modern aircraft: airspeed, vertical speed indicator, altimeter,

artificial horizon, heading indicator, and turn coordinator ("needle and ball").

The 737 simulation is linearized (piece-wise), being an integrated chain

of linearized models of predicted, normal flight conditions (called trim-

points). The simulation contains models for flying modes ranging from

cruising to landing. However, in the interest of simulation simplicity, no

models were designed to handle turning of the aircraft. Because the simulation

manipulates the aircraft only in the vertical plane with no turning, there is no

need for a heading indicator or a turn coordinator. In their places (in Figure 2)
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were added an engine pressure ratio (EPR) gauge and pilot direction indicator

(PDI), which indicates aircraft position, relative to the glideslope (vertical

landing path).
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Figure 2. Output section.

The airspeed gauge (upper left) was the first created, serving as a model

for the other gauges. It has a non-linear presentation, indicated in knots by the

rotary needle. It also indicates true airspeed and Mach number as numerics.

Note that indicated airspeed is the value of speed produced by air pressure

measured in a Pitot tube. True airspeed is then computed from indicated

airspeed and altitude.

Engine pressure ratio denotes the pressure differential between the intake

and exhaust of the main engines. It is a measure of how much thrust a turbo-

jet engine is producing. The EPR gauge (lower left) has a linear range of 0.8

(which is an engine idle condition) to 2.4 (which is a full thrust condition).

The simulation does not permit direct control of engine throttle settings. It
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allows only for air speed settings, with the autopilot adjusting the engine

thrust to achieve the desired airspeed.

The artificial horizon gauge (upper middle) emulates a gyroscopic gauge

that maintains a constant, steady horizon. The artificial horizon indicates roll

and pitch of the aircraft as a reference for the pilot. Roll is defined as the

rotation of the aircraft about the longitudinal axis (parallel to the direction of

motion). Pitch is defined as the rotation of the aircraft about a lateral axis (up

and down rotation) [2]. Because the simulation can change only altitude (no

turning), the artificial horizon in the GUI indicates only changes in pitch

(Figure 3). As the simulation changes flight path angle or angle of attack, the

artificial horizon displays changes in degrees off the horizon. Maximum range

is +/- 15 degrees.

ROLL PITCH

Figure 3. Roll & pitch diagram.

Flight path angle (FPA) is the angle between the direction an aircraft is

travelling (velocity-vector) and the local horizontal. Angle of attack is the

angle between the velocity-vector and the longitudinal axis of the aircraft.

Angle of attack is directly proportional to aerodynamic lift produced by the

wings. In a landing scenario, for example, a pilot uses a large angle of attack

to produce extra lift at low air speeds (flaring).

A single-handed altimeter (upper right) with a numeric window was

designed specifically for this application. The numeric window indicates

thousands of feet while the rotating needle indicates hundreds of feet. The

altimeter was designed as a simplified model compared with the three-handed

altimeter found in most cockpits that resembles an analog clock. This was
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necessary to maintain a reasonable level of computational speed for the

program as a whole. There generally exists an inverse relation between

computational speed of the software and the amount of animated "mass" that

must be manipulated during every iteration of the GUI.

The vertical speed indicator (VSI) displays rate of climb or descent in

thousands of feet per minute. The VSI gauge (lower right) is also non-linear

and closely mimics the one found in a true Boeing 737. However, the GUI's

VSI is different because the information is calculated and displayed instantly.

In a true Boeing 737, the VSI gauge integrates samples of changes in air

pressure. This results in a five-second delay of the readings in an actual

gauge.

The instrument landing system (ILS) is an important aid to the pilot

when making reduced-visual or instrument landings. The ILS consists of an

array of radio-frequency beacons, aircraft sensors, and instruments. Its

purpose is to provide distance references and to assist the pilot in locating the

aircraft within a standardized glide slope of 3 degrees with respect to the

horizon. This GUI utilizes three ILS instruments: PDI, distance measurement

equipment (DME), and marker beacons (Figure 4).

Signal . Outer
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Runway DME [] 3 degree Glide Slope

Figure 4. Typical ILS System.

The PDI gauge (lower middle) indicates glide slope deviation relative to

the 3 degree standard. This instrument lies dormant until the glide slope radio

signal becomes strong enough to receive and interpret (usually at 30 nautical

miles from the runway). Then a horizontal bar appears and slides up or down
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the scale (a similar action to the artificial horizon gauge), indicating a
deviation of +/- 1.0 degree.

The DME display indicates the distance in nautical miles between the

aircraft and a beacon located 1000 feet in front of the runway threshold

(Figure 4). This gives the pilot long-range information during approaches to
an airport. The theoretical range of the DME is approximately 199 nautical
miles; however, the simulation provides DME information at any distance to

the runway.

Marker is another ILS distance indicator that displays when the aircraft

is flying over three radio beacons located close to the runway. The beacons
are called outer, middle, and inner by the Federal Aviation Administration

(FAA). Their distances to the runway are 4.5 nautical miles, 2800 feet, and

1000 feet, respectively. The marker's purpose is to give another reference to
the pilot during final approach and landing scenarios.

The time display shows the simulated flying time (in seconds) that has
passed since the beginning of a simulation run. The FPA window (below the

EPR gauge) always indicates the current and true flight path angle the aircraft
is flying, regardless of what is being commanded by the autopilot. FPA is not

a standard aircraft measurement or display and is presented here for user
information.

INPUT SECTION.

The input section consists of all controls necessary to manipulate the

autopilot (i.e., manually fly the simulation). Input from the pilot to the GUI

consists of an array of buttons manipulated by a mouse. When the arrow icon

on the screen enters a button, the button is highlighted. The button blinks

when the mouse is clicked, and the respective routine is executed.

Different schemes for entering information were considered, but the most

practical are the buttons. Using the array of buttons is simple because it

requires only a computer mouse and not a keyboard (Figure 5). There is the

possibility that the mouse and button system could be substituted by a touch

screen display in a real aircraft since the use of a keyboard might be
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unrealistic.
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Figure 5. Input Section.

The START and QUIT buttons at the top of the screen fulfill their

obvious functions of starting and stopping a simulation run. The AUTOLAND

button arms the landing mode of the autopilot. The autoland takes full control

of the aircraft and makes proper adjustments to the FPA, to track the 3 degree

glide slope signal. The autoland can be "armed" at any time during a flight,

but it will only "engage" at approximately a DME of 30 nautical miles and a

deviation of less than +/- 0.1 degree offthe true glide slope as shown on the

PDI gauge. The ARMED and ENGAGED words are normally hidden on the

screen and appear when necessary.

FPA is adjusted by the array of positive and negative increment buttons.

The pilot "dials in" the requested FPA value, which is displayed in the PREV

(preview) window. Once this is achieved, the TAKE button is pushed and the

preview FPA value is communicated to the blackboard. Once at the

blackboard, the data is routed to the autopilot and possibly the recta-

controller. For confirmation purposes, the new FPA is also sent from the

blackboard to the GUI and appears in the COMMANDED window. The range
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of increments for the FPA is +/- 0.1 and +/- 1.0 degree. Changes to indicated

air speed (IAS) operate in the exact same manner as FPA, with the exception
that the increments are +/- 1 and +/- 10 knots.

The GEAR button toggles the landing gear of the simulation. The

display window next to it will indicate only UP or DOWN. The

FLAPS+/FLAPS- buttons set the aircraft flaps to predetermined values. The

flaps are aerodynamic devices on the trailing edge of the wings. They are used

to produce extra lift for low-speed landings and takeoffs, yet have the

disadvantage of producing added aerodynamic drag. The amount of lift

produced by adding flaps is proportional to the angle of the flaps setting. The

absolute flaps pre-sets available in the simulation are 0,1,5,10,15,25,30, and 40

degrees.

GUIDANCE SECTION.

The guidance section is the most complex input/output data flow manager

of the GUI. It is also unique to this GUI because it is specific to the functions

of the interpreter and the meta-controller. The interpreter function comprises

three output windows; the meta-controller has 5 output windows and an array

of input buttons (Figure 6).

1. Interpreter Interface.

There are three interpreter windows: dynamic mode, flight operations

mode (flight ops), and interpreter messages (Figure 6). The dynamic mode

window displays a mode such as "climb" or "dive," which is an instantaneous

description of what the plane is doing. The interpreter decides this mode,

based on information from the airplane's sensors and fuzzy rules (membership

functions) which are pre-defined. The flight ops mode window displays a mode

such as "Go Around," "Approach," or "Cruise." This is a higher level, less

instantaneous description of the airplane's mode. The decision processing for

this mode is based on sensor input in a way similar to the dynamic mode

decision. In addition, it also includes some memory of previous flight ops

modes and the current dynamic mode. The message window is used for the

interpreter to communicate to the pilot about any aircraft or operation

abnormalities or anomalies detected by the decision process. For example, if
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sensors indicate the airplane is about to land and the landing gear is not down,

the pilot would be notified about the situation.

El _ Plsn _ I'1:| Clm VIw MCI Advla8 ceu_

Figure 6. Guidance Section.

2. Meta-Controller Interface.

The meta-controller functions are the most complex functions of the GUI

because of the unique requirements for communication with the pilot. There

are control levels, output windows, and air traffic control (ATC) clearance

information exchange. Specifically, there are five output windows: level,

approach plan, query, advice, and clearance menu (Figure 6). The advice

window is the only true, pure output window with no corresponding input

button for pilot feedback.

The meta-controller operating level (MC: Level) denotes the overall

level of control being exerted by the meta-controller. The pilot has control of

this level and there are four options available" Advise Only, Emergency

Prevention Only, Pilot Assistance, and Terminal Control. The pilot may select

the level of control at any time during a flight. This design leaves the pilot "in

the loop" as the final arbiter of the amount of guidance provided by the meta-

controller.

Advise Only mode represents what would be thought of as manual

control mode. The pilot is in complete control of the autopilot, and the meta-

controller will give only warnings of improper commands and will recommend

flap, gear, and autoland settings. In Emergency Prevention Only mode, the
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meta-controller passes all valid commands to the autopilot and will make flap,

gear, and autoland command recommendations to the pilot. The definition of

"passing a valid command" is the meta-controller determining the

appropriateness of a flight command relative to the current flying conditions.

Pilot Assistance mode enables the meta-controller to pass all valid commands

to the autopilot, plus plan and execute flap, gear, and autoland commands

automatically. In Terminal Control mode the meta-controller plans and issues

commands to the autopilot to take the airplane from cruise to landing, under a

pilot-specified approach plan. This approach plan is the only way the pilot

may specify the behavior of the airplane during Terminal Control mode. The

Terminal Control mode is the most complex aspect of the meta-controller and

is given the most research effort.

The approach plan (MC:Approach Plan) contains a numbered list (max 6)

of the ATC clearances that the pilot specifies for the meta-controller to follow

during Terminal Control Mode. The clearances use standard FAA

abbreviations to condense information. Once these clearances are approved by

ATC, the pilot presses the associated PROCEED button, which directs the

meta-controller to recognize the clearances.

The clearance menu (MC:Clearance Menu) is a device for the creation

and change of the approach plan, and it can enter new clearances. New

clearances are changes to the approach plan that are requested by ATC and

must be acted upon immediately (i.e., rapidly changing weather conditions or

impending collision). There are seven different menus that the pilot must page

through in order to specify all the information that is necessary. This is the

only instance where a menuing system is used in the GUI. Menus tend to be

slower to use, but they exchange a greater amount of information. Normally,

pilots request clearances sequentially from ATC during a flight. This menu

and the approach plan will now allow the pilot to plan all necessary clearances

and communicate this information electronically with ATC.

The query window (MC:Query) represents a section of the meta-

controller that constantly monitors pilot commands and makes decisions as to

the appropriateness of any given command. If it witnesses a command it

deems abnormal for the given circumstances, it asks the pilot to confirm the
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input with the corresponding YES/NO buttons.

The advice window (MC:Advice) displays any general comments the

meta-controller wishes to provide the pilot. It gives recommendations for

proper flying techniques. This window also contains any future output

requirements, if necessary.

IMPLEMENTATION ISSUES.

SOFTWARE ENGINEERING.

The universal aim of software engineering is to generate quality

software. Yet, it is difficult to produce satisfactory results when experts in the

field agree that vast inefficiencies exist within the industry. The typical

engineering lifecycle for software consists of 7 stages: requirements

definition, design, implementation, testing, installation, and maintenance [3]. It

is the last step in the process, maintenance, that consumes the majority of

costs.

It has been determined that the software industry consumes 70% of its

resources on maintenance (debugging, rewriting, or writing newer versions) [4].

Although a portion of the workload resembles creative thought, the vast

majority of this pursuit constitutes rehash of previous labors of co-workers.

Often one programmer may not be responsible for a whole task over the

software's lifetime, requiring coordination between a succession of

programmers. Thus, the productivity of human resources in the software

construction industry is relatively low.

One solution to these problems lies in the tools or languages computer

specialists use today. The classical languages (i.e., FORTRAN, Pascal, C,

Cobal) promote programming environments such that functions control data,

with these functions having a specific, well-ordered layout within the body of

the program. This application-specific set-up works well for small, low-level

jobs. However, for jobs with increasing complexity or dynamic conditions, the

difficulty of changing a system of structured functions can increase

geometrically with the size of the original system. This is because a

modification in one section of the program produces a "rippling effect" that
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disturbs other sections severely. Also, complex flows of commands within the

source code become a temptation for programmers to produce quick fixes to
normal programming obstacles (i.e., "spaghetti" programming).

THE OBJECT-ORIENTED APPROACH.

A better system is organized when functionality and program control are

modularized. This creates a decentralized architecture in which programming

problems are localized and more easily identified. Modifications disturb

smaller portions of the system and thus are made easier. This decentralized

design theme falls under the domain of object-oriented programming.

Object-oriented programming was conceived from computer science's

software engineering subdiscipline as a means of symbolic representation of

data. Object-oriented design has developed into its own respected field of

software engineering. Object-oriented programming strengths have been

highlighted recently for an ability to endure an increased measure of

maintainability and reusability. Another useful property is a proficiency for

supporting artificially intelligent environments while simultaneously handling

classical programming problems.

This present research project is embedded in object-oriented

programming. The term "object-oriented" means that software is organized

around discrete objects that represent data and functions. This is different

from conventional programming where the relationship between data and

functions is not emphasized. There is a measure of uncertainty between

software experts as to what exactly defines object-oriented programming;

however, there are generally four characteristics: identity, classification,

polymorphism, and inheritance [5].

GUI DEVELOPMENT REQUIREMENTS.

Many of the beneficial properties of object-oriented programming suit

the needs of a potential GUI for knowledge-based control, especially in terms

of system construction. Many GUIs are designed to have a separate function

from the rest of the system. The bottom-up, decentralized nature of object-

oriented programming fits this design image because changes based on
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changing (dynamic) system specifications are simple. Also, the method of
geometric modeling of objects is useful in system development. There is a

direct correspondence between objects and the icons/images the user sees.
This results in a clean and uncluttered system design [6]. The reusability

aspects of object-oriented software can be employed during construction when
completed graphical objects are copied and modified for another use. Any

repetitious patterns in a GUI can take advantage of this property.

Performing graphical programming in classical languages can be quite
complex, especially when attempting movement or animation. In an object-

oriented environment creation of images is simplified by an extensive graphics

library. The programmer can call upon many classes capable of producing the

necessary graphical objects. In addition, objects can be combined in a process
called composition. This allows several objects to be combined into a single,
complex object, which can be treated as a unit. Animation or movement is

made easier in an object-oriented environment because only a simple position

adjustment is needed. This is especially useful when dealing with complex
objects.

EIFFEL, THE SELECTED LANGUAGE.

1. Introduction.

There is a number of object-oriented programming languages available

on the market today (C++, Ada, SIMULA). In 1986 the Eiffel programming

language was released and publicized as one of the purist environments for

object-oriented software construction. Eiffel is a language and environment

intended for the design and implementation of quality software in production

environments. The language is based on the latest principles of object-

oriented design, with a special emphasis on producing reliable software from

industrial components. Eiffel promotes a method of software construction by

combination of self-contained and flexible modules [7]. The supporting

environment includes a library of reusable classes and several useful

development tools. For these reasons, fn 1989, Eiffel was chosen by

predecessors in knowledge-based control as the programming environment for

future research, including this present project.
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Eiffel was written and developed by Bertrand Meyer and his company,
Interactive Software Engineering (ISE) in Santa Barbara, CA. Most of the

central design themes of Eiffel can be traced to Meyer's work with Simula,

another object-oriented language. He also added important concepts from his

academic work on software verification and computer language definition.
Eiffel has evolved continuously since its first introduction in 1986[8]. Eiffel is

one the few software development systems that offers an academic textbook
written by Meyer, explaining its software theories.

The programming environment that Meyer created compels programmers

to produce quality software in Eiffel's object-oriented image. This "ideal"
software image that Meyer is striving for encompasses what he calls five

external and five internal properties.

The external properties represent top-level characteristics whose

presence or absence may be detected by the users. The internal properties are

perceptible traits that only computer professionals recognize. It is important
to note that the external factors take precedence in the end because the user
does not care how internal mechanisms are organized but, rather, how well the

software works for him or her. However, the internal factors are the key to
ensuring that the external factors are satisfied [9].

PROGRAM DESIGN AND APPLICATION DETAILS.

DESCRIPTION OF SYSTEM ARCHITECTURE.

1. Flow Charts.

When describing object-oriented system architecture, it is practical to

show relations between classes graphically. This conveniently uses a human's

symbolic reasoning abilities. The conventional programming world calls this

a flow chart. In a conventional flow chart, the flow of data comprises the lines

that link the sections of the program (nodes). The nodes in the chart are the

functions or processes that transform the data.

In an object-oriented system, the flow of data is not very obvious and is

sometimes confusing to follow. A proper graphical representation of the
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system should show only the relationships between classes (nodes). The only

two real relationships between classes are inheritance and client/supplier. The
flow of data between classes is not apparent. Data flow is considered

unimportant during the analysis of an object-oriented system because it is so

highly regulated in the source code and yet unknown as to its exact location
during execution.

2. Graphical Representation.

The following figure shows the top-level architecture of the knowledge-

based controller, using Eiffel's GOOD facility. The class, EXECUTIVE, is the

"root" class where the main program control loop resides. Classes GUI,

META_CONTROLLER, INTERPRETER, and BLACKBOARD are the four

major modules of the system. The double-lined arrows indicate client/supplier

relationship. A single-line arrow (not shown) indicates an inheritance

relationship. Control of each module by the EXECUTIVE is exerted through

the client/supplier relationship. Communication between modules and the

BLACKBOARD is also accomplished by the client/supplier relationships

(Figure 7). Actually, communication between the GUI and BLACKBOARD

classes is accomplished with C routines because of the fact the GUI is a

separate UNIX process (a design oversight of Eiffel graphics).

Figure 7. The EXECUTIVE and Related Classes.

Not shown in Figure-7 are inheritance relationships, because this would clutter

the figure with over 100 classes. These inherited classes are support classes
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that come from the Eiffel libraries. They produce the base of the functional

infrastructure of the system and supply operations ranging from basic math

functions to complex searches of multi-dimensional arrays.

The next layer of analysis of the GUI is shown in Figure 8. Above are

all classes inherited by the GUI, and below are the suppliers and clients

(EXECUTIVE,BLACKBOARD) of the GUI. The suppliers directly represent

the gauges and output windows seen on the GUI. For simplicity, not shown in

Figure 8 is the supplier relationships of all the buttons, which would clutter

the figure with thirty classes. Of the inherited classes; BASIC and

SINGLE_MATH provide simple math functions from the Libraries,

GUI_GLOBAL_OBJECT provides public or "global" information to each of

the classes in the GUI, and PROJ CONST shares information with the meta-

controller.

Figure 8. The GUI and Related Classes.
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USING THE GUI.

1. Flying.

To use the GUI is an entirely simple enterprise. However, to fly the

simulation requires the knowledge of a pilot to properly land the aircraft. This

requires one to have working knowledge of the proper settings of the aircraft

controls for every conceivable flying condition. Under most conditions this

meta-knowledge consists of knowing what altitude and airspeed should be

maintained during cruising and normal descent to the runway. Also, the pilot

should be familiar with the final approach sequence and proper positioning of

the aircraft before engaging the auto-landing system. In theory, any qualified

737 pilot could use the GUI for the first time and successfully complete a

landing. However, through repeated attempts, an unqualified user is capable

of acquiring the "feel" of the aircraft and performing successful landings.

As stated before, only cruising and landing scenarios were programmed

with the simulation. A take-off scenario is possible, but was not programmed.

Simulation models for take-off and ascent were not created because academic

resources were focused on the landing paradigm. Pilots agree that airport

approach and landing are the most difficult aspects of flight and are therefore

the most taxing on meta-controller ability.

2. Initialization.

To run the system, a user types the name of the executable file and hits

return. The UNIX filename of the executable is "executive." The program

asks the user for the initial states for the aircraft simulation and other

information. The simulation requires an initial airspeed, altitude, and distance

to the runway. The simulation polling frequency is also requested. This is the

rate that the simulation is sampled in time. For realistic results that match

the rate the GUI can iterate, a value of two seconds is suggested. Last, the

initial meta-controller operating level is requested. A recommended starting

point for a simulation run would be a cruising state of 25,000 feet altitude, 300

knots IAS, a DME of 100 nautical miles, and the meta-controller in Advise

Only mode (Figure 9).
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The default values are presented in the brackets [ ]. The user has the

option to save any new set of initial values. The software then generates an

X-Window application window and fills it with recognizable graphical objects
of the main display of the GUI. There is a six-second delay while

EXECUTIVE: Start-up file environment variable AFCS STARTUP not set.

Simulation poll freq. (sec)
IAS (knots)

Altitude (feet)
DME (nautical miles)

[2]: 3

[250]: 300
[10000]: 25000

[90]: 100

Meta-controller operating level:

0) Advise Only

1) Emerg. Prevention Only

2) Pilot Assistance

3) Terminal Control

Meta Controller Level [0]: 0

Save the new values? [n]: n

Simulation: Setup complete.

Figure 9. Initialization of the EXECUTIVE.

the remaining background programs are started. To begin a simulated flight

the user first clicks the START button with the mouse. Next, the user must

wait for the autopilot to fly from the center of a linearized model towards the

specified starting point, known as Start-Up Mode. After this is accomplished,

full-control is transferred to the user.

If the pilot wishes to use manual control of the aircraft, he or she "flies"

the simulation by selecting inputs to the autopilot. There are no "stick &

rudder" controls that one would expect in most aircraft simulations. The

scope of the research grant was to explore knowledge-based control schemes

for flight management and not to produce the most realistic flight simulation.

The computer simulation is manipulated by an inner-loop, numerical autopilot.

Only input is needed from FPA, IAS, landing gear, flaps position, and

autolanding system.
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FPA and IAS commands are the most important flight controls. Note that

changes in FPA and CAS cause changes in the throttle settings, as well as
elevator movement. For FPA changes there is initial elevator movement to

pitch the aircraft to the new FPA, but, in the long term, FPA changes cause

primarily throttle changes. For CAS changes, there is both long term throttle

and elevator changes. The elevator change is primarily a re-trimming
movement. There is no direct control over the throttle settings, only airspeed.

Flaps and gear commands are the simplest to use and understand. They
produce a corresponding direct action on the aircraft when used. The

AUTOLAND button activates a glideslope error numerical control law

(algorithm) for automatic control of the pitch axis in landing the aircraft.

Autoland provides two functions: it automatically tracks the glide slope down

to the runway and it flares the aircraft just before touch down. Once the

AUTOLAND button is pressed, the system is armed ("ARMED" appears on the

GUI). The aircraft then is flown to the 3 degree glide slope within a tolerance

of +/- 0.25 degree of deviation as indicated on the PDI gauge. Within this

tolerance the autoland is engaged and will guide the aircraft down the glide

slope to the runway ("ENGAGED" appears on the GUI). Just before touch

down, the aircraft flares, increasing the angle of attack, thus providing larger

amounts of aerodynamic lift at slower airspeeds, necessary for landing.

A typical scene from a high altitude cruising state is shown in Figure 10.

Note that the PDI gauge and MARKER window are not needed and lie

dormant. The simulation contains many complex models for almost all normal

flying maneuvers. However, in the event the pilot flies the aircraft into a state

where no appropriate aerodynamic models exist, the GUI will display the

words "MODEL OUT" between the FPA and IAS controls. For example, flying

out of model could constitute deploying the landing gear while cruising at

25,000 feet or flying too slowly without the correct flaps setting. The

simulation will still run, but unpredictable results may occur. The pilot should

try to restore a more "normal" flight regime.

With the meta-controller in Advise Only mode, it is the responsibility of

the pilot to make an approach and landing. A good approach consists of

reducing airspeed and altitude to around 180 knots and 3000 feet to intercept
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the glide slope with the autoland armed. Thus, the autoland will be engaged

and make the necessary adjustments to the FPA to track the glide slope. The

pilot is then left to incrementally reduce airspeed and add degrees of flaps to

end with a landing IAS of 120 knots and 30 or 40 degrees of flaps. The landing

gear should be deployed around an altitude of 500 feet. Figure 11 shows a

scene from a landing sequence; note the marker window is activated.

CONCLUSIONS

PROGRAMMING PERSPECTIVES.

The previous sections described an application of knowledge-based

control. With an application to transport aviation and a medium of object-

oriented programming, this research straddles the disciplines of electrical

engineering and software engineering. The electrical engineering aspects

encompass real-time, advanced control systems and interfaces. The scope of

the software engineering properties includes object-oriented programming,

system planning, and co-development of differing subsystems. Knowledge-

based control is the marriage of two disciplines. There are no tools or

techniques within the domain of electrical or software engineering that are off

limits in the pursuit of future applications.

It is becoming apparent that a critical mass of interest is building up

around object-oriented programming. Individuals in the software community

foresee it as the new tool for the future. While now a rallying point, proper

object-oriented techniques are in danger of losing focus. C++ is currently the

most popular object-oriented language in use. It offers the programmer an

environment in which C and C++ co-exist, thus reducing the culture shock of a

pure object-oriented language. Therefore, a C programmer stands on familiar

ground when exploring the domain of object-oriented programming.

The danger lies in the fact that C++ may be fool's gold. C++ delivers an

environment with modular design themes, but it lacks the mandatory

compliance to object-oriented communication policies that are found in

Eiffel [1°]. It is possible to produce quality software in the C++ environment.

However, undisciplined programmers are then capable of producing unreliable
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software with hidden "time-bombs." This would effectively weaken the trust
required to propagate a library of reusable classes [11]. In the fall of 1991,

AT&T's long distance network crashed in the New York area; the problem was

traced to one single line of code in the control software. The repercussions of
software reliability will become more evident in the future as more of the
infrastructures we depend on fall under software control.

Eiffel does offer a haven for software production. While not promising
the moon, it can be successfully defended in the software arena as a viable

choice. The future of Eiffel has been unclear to this point. International

popularity and ISE's ability to produce improved versions continue to push the
language along, grabbing the attention of software experts along the way.

Eiffel will always remain a complex software entity. To those who can tackle

the aspects of data abstraction and foresee long-term software needs, this
investigator believes Eiffel will be the best language to use.

HINDSIGHT.

Given an opportunity to do things differently or to rework the project, I

would like to have used a different version of Eiffel, if possible. Version 3.0 is
reported to contain many improvements over the current version 2.3. The

press has reported that 50% of the changes to version 3.0 are within the

graphics libraries. The compiler was highly modified to improve development
time. Also, the small bugs in the libraries that have given Eiffel the reputation
of a language with teething problems have been fixed [12].

Given another chance, I would have spent more time practicing and

perfecting object-oriented techniques before I began programming a complex
system as large as the GUI. Major decisions about the program architecture

were made at the beginning of the project. Without a sound understanding of

object-oriented techniques, I found myself restarting the project several times
to accomplish my goals and to streamline intermodule communication.

GUI CRITIQUE.

The GUI performs all the goals and necessary functions demanded by the

knowledge-based controller. There still exist criticisms in the design of the
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program and in the operational performance. One could criticize the fact that

there is no view displayed of a far-off runway as if looking through a cockpit

window. Although this was not a goal or request of the GUI, a simplistic

graphical representation of a runway could be calculated and displayed.

However, such a processing algorithm would certainly have robbed valuable

CPU attention from a system already highly taxed.

The GUI relays almost no navigational information with the exception of

the DME display and navigational clearance data. There are no computerized

map displays or inertial navigating system interfaces. Such systems are found

in present aircraft and would be a research project beneficial to future aircraft.

CLOSING COMMENTS.

This research was part of an overall attempt to obtain an increased

understanding of knowledge-based control. In this process, object-oriented

software techniques and tools were explored as a means to improve and

implement applications of the theory. This research was also prompted by the

desire for "hands-on" experimentation with a pure object-oriented language

like Eiffel. Because the applications of knowledge-based control have become

so complex, there now is a requirement for sophisticated interfaces. All of

these predetermined requirements and desires were fulfilled in the

development of the GUI.
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